Suppr超能文献

通过先验知识和/或不同实验条件的贝叶斯整合进行基因调控网络重建。

Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions.

作者信息

Werhli Adriano V, Husmeier Dirk

机构信息

Department of Computing Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.

出版信息

J Bioinform Comput Biol. 2008 Jun;6(3):543-72. doi: 10.1142/s0219720008003539.

Abstract

There have been various attempts to improve the reconstruction of gene regulatory networks from microarray data by the systematic integration of biological prior knowledge. Our approach is based on pioneering work by Imoto et al. where the prior knowledge is expressed in terms of energy functions, from which a prior distribution over network structures is obtained in the form of a Gibbs distribution. The hyperparameters of this distribution represent the weights associated with the prior knowledge relative to the data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for sampling networks and hyperparameters simultaneously from the posterior distribution, thereby automatically learning how to trade off information from the prior knowledge and the data. We have extended this approach to a Bayesian coupling scheme for learning gene regulatory networks from a combination of related data sets, which were obtained under different experimental conditions and are therefore potentially associated with different active subpathways. The proposed coupling scheme is a compromise between (1) learning networks from the different subsets separately, whereby no information between the different experiments is shared; and (2) learning networks from a monolithic fusion of the individual data sets, which does not provide any mechanism for uncovering differences between the network structures associated with the different experimental conditions. We have assessed the viability of all proposed methods on data related to the Raf signaling pathway, generated both synthetically and in cytometry experiments.

摘要

为了通过系统整合生物学先验知识来改进从微阵列数据重建基因调控网络,人们进行了各种尝试。我们的方法基于本元等的开创性工作,其中先验知识以能量函数的形式表示,从该能量函数以吉布斯分布的形式获得网络结构上的先验分布。该分布的超参数表示相对于数据与先验知识相关联的权重。我们推导并测试了一种马尔可夫链蒙特卡罗(MCMC)方案,用于从后验分布中同时对网络和超参数进行采样,从而自动学习如何权衡来自先验知识和数据的信息。我们已将此方法扩展为一种贝叶斯耦合方案,用于从相关数据集的组合中学习基因调控网络,这些数据集是在不同实验条件下获得的,因此可能与不同的活跃子途径相关联。所提出的耦合方案是以下两种方法之间的折衷:(1)分别从不同子集学习网络,这样不同实验之间不共享任何信息;(2)从单个数据集的整体融合中学习网络,这没有提供任何机制来揭示与不同实验条件相关的网络结构之间的差异。我们已在与Raf信号通路相关的数据上评估了所有提出方法的可行性,这些数据既有合成生成的,也有细胞计数实验中产生的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验