IEEE Trans Med Imaging. 2017 Feb;36(2):607-617. doi: 10.1109/TMI.2016.2623608. Epub 2016 Nov 1.
We investigate uncertainty quantification under a sparse Bayesian model of medical image registration. Bayesian modelling has proven powerful to automate the tuning of registration hyperparameters, such as the trade-off between the data and regularization functionals. Sparsity-inducing priors have recently been used to render the parametrization itself adaptive and data-driven. The sparse prior on transformation parameters effectively favors the use of coarse basis functions to capture the global trends in the visible motion while finer, highly localized bases are introduced only in the presence of coherent image information and motion. In earlier work, approximate inference under the sparse Bayesian model was tackled in an efficient Variational Bayes (VB) framework. In this paper we are interested in the theoretical and empirical quality of uncertainty estimates derived under this approximate scheme vs. under the exact model. We implement an (asymptotically) exact inference scheme based on reversible jump Markov Chain Monte Carlo (MCMC) sampling to characterize the posterior distribution of the transformation and compare the predictions of the VB and MCMC based methods. The true posterior distribution under the sparse Bayesian model is found to be meaningful: orders of magnitude for the estimated uncertainty are quantitatively reasonable, the uncertainty is higher in textureless regions and lower in the direction of strong intensity gradients.
我们研究了医学图像配准稀疏贝叶斯模型下的不确定性量化。贝叶斯建模已被证明具有强大的功能,可以自动调整配准超参数,例如数据和正则化函数之间的权衡。最近,稀疏诱导先验已被用于使参数化本身具有适应性和数据驱动性。变换参数上的稀疏先验有效地倾向于使用粗基函数来捕获可见运动中的全局趋势,而仅在存在相干图像信息和运动的情况下才引入更精细、高度局部化的基函数。在早期的工作中,稀疏贝叶斯模型下的近似推理是在高效的变分贝叶斯 (VB) 框架中解决的。在本文中,我们感兴趣的是在这种近似方案下与在精确模型下得出的不确定性估计的理论和经验质量。我们实现了一种基于可逆跳跃马尔可夫链蒙特卡罗 (MCMC) 采样的(渐近)精确推理方案,以描述变换的后验分布,并比较 VB 和 MCMC 基于方法的预测。发现稀疏贝叶斯模型下的真实后验分布是有意义的:估计的不确定性数量级是合理的,无纹理区域的不确定性更高,而在强度梯度方向上的不确定性更低。