文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

贝叶斯混合模型的马尔可夫链蒙特卡罗模拟在基因网络推断中的应用。

Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference.

机构信息

Division of Biomedical Engineering, Hankuk University of Foreign Studies, Gyeonggi-do, 17035, South Korea.

Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, South Korea.

出版信息

Genes Genomics. 2019 May;41(5):547-555. doi: 10.1007/s13258-019-00789-8. Epub 2019 Feb 11.


DOI:10.1007/s13258-019-00789-8
PMID:30741379
Abstract

BACKGROUND: Simultaneous measurement of gene expression level for thousands of genes contains the rich information about many different aspects of biological mechanisms. A major computational challenge is to find methods to extract new biological insights from this wealth of data. Complex biological processes are often regulated under the various conditions or circumstances and associated gene interactions are dynamically changed depending on different biological contexts. Thus, inference of such dynamic relationships between genes with consideration of biological conditions is very challenging. METHOD: In this study, we propose a comprehensive and integrated approach to infer the dynamic relationships between genes and evaluate this approach on three distinct gene networks. RESULTS: This study demonstrates the advantage of integrating Markov chain Monte Carlo (MCMC) simulation into a Bayesian mixture model to overcome the high-dimension, low sample size (HDLSS) problem as well as to identify context-specific biological modules. Such biological modules were identified through the summarization of sampled network structures obtained from MCMC simulation. CONCLUSION: This novel approach gives a comprehensive understanding of the dynamically regulated biological modules.

摘要

背景:同时测量数千个基因的表达水平包含了许多不同方面的生物学机制的丰富信息。一个主要的计算挑战是找到从这些大量数据中提取新的生物学见解的方法。复杂的生物过程通常在各种条件或环境下受到调节,并且相关的基因相互作用根据不同的生物背景而动态变化。因此,考虑到生物条件,推断基因之间的这种动态关系是非常具有挑战性的。

方法:在这项研究中,我们提出了一种综合的、集成的方法来推断基因之间的动态关系,并在三个不同的基因网络上评估了这种方法。

结果:本研究证明了将马尔可夫链蒙特卡罗(MCMC)模拟集成到贝叶斯混合模型中以克服高维、小样本量(HDLSS)问题以及识别特定于上下文的生物模块的优势。这些生物模块是通过对从 MCMC 模拟中获得的采样网络结构进行总结来识别的。

结论:这种新方法提供了对动态调节的生物模块的全面理解。

相似文献

[1]
Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference.

Genes Genomics. 2019-2-11

[2]
A full bayesian approach for boolean genetic network inference.

PLoS One. 2014-12-31

[3]
Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes.

Bioinformatics. 2010-12-21

[4]
Inference of regulatory networks with a convergence improved MCMC sampler.

BMC Bioinformatics. 2015-9-24

[5]
Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.

Genetics. 2015-4

[6]
A simple introduction to Markov Chain Monte-Carlo sampling.

Psychon Bull Rev. 2018-2

[7]
Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation.

Philos Trans A Math Phys Eng Sci. 2012-12-31

[8]
On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo.

PLoS Comput Biol. 2021-9-3

[9]
Bayesian network feature finder (BANFF): an R package for gene network feature selection.

Bioinformatics. 2016-12-1

[10]
Gene regulatory network inference based on a nonhomogeneous dynamic Bayesian network model with an improved Markov Monte Carlo sampling.

BMC Bioinformatics. 2023-6-24

引用本文的文献

[1]
Inference on autoregulation in gene expression with variance-to-mean ratio.

J Math Biol. 2023-5-3

[2]
Inferring and analyzing gene regulatory networks from multi-factorial expression data: a complete and interactive suite.

BMC Genomics. 2021-5-26

本文引用的文献

[1]
Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures.

Cell Syst. 2017-9-27

[2]
Gene regulatory network inference using PLS-based methods.

BMC Bioinformatics. 2016-12-28

[3]
Inference of Gene Regulatory Network Based on Local Bayesian Networks.

PLoS Comput Biol. 2016-8-1

[4]
Gene network inference by fusing data from diverse distributions.

Bioinformatics. 2015-6-15

[5]
Augmenting microarray data with literature-based knowledge to enhance gene regulatory network inference.

PLoS Comput Biol. 2014-6-12

[6]
Inferring gene regulatory networks by ANOVA.

Bioinformatics. 2012-3-30

[7]
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.

Genome Res. 2012-3-28

[8]
Discovery of gene network variability across samples representing multiple classes.

Int J Bioinform Res Appl. 2010

[9]
Inferring regulatory networks from expression data using tree-based methods.

PLoS One. 2010-9-28

[10]
Inference of gene pathways using mixture Bayesian networks.

BMC Syst Biol. 2009-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索