Suppr超能文献

一种使用基方向拟合低角分辨率扩散图像的正则化双张量模型。

A regularized two-tensor model fit to low angular resolution diffusion images using basis directions.

作者信息

Sotiropoulos Stamatios N, Bai Li, Morgan Paul S, Auer Dorothee P, Constantinescu Cris S, Tench Christopher R

机构信息

Division of Clinical Neurology, Medical School, University Hospital, University of Nottingham, Nottingham, UK.

出版信息

J Magn Reson Imaging. 2008 Jul;28(1):199-209. doi: 10.1002/jmri.21380.

Abstract

PURPOSE

To resolve and regularize orientation estimates for two crossing fibers from images acquired with conventional diffusion tensor imaging (DTI) sampling schemes.

MATERIALS AND METHODS

Partial volume causes artifacts in DTI. Given that routine use of high angular resolution diffusion imaging (HARDI) is still tentative, a regularized two-tensor model to resolve fiber crossings from conventional DTI datasets is presented. To overcome the problems of fitting multiple tensors, a model that exploits the planar diffusion profile in regions with fiber crossings is utilized. A regularization scheme is applied to reduce noise artifacts, which can be significant due to the relatively low number of acquired images. A set of basis directions is used to convert the two tensor model to many models of lower dimensionality. Relaxation labeling is utilized to select from amongst these models those that preserve continuity of orientations across neighbors. Revised fractional anisotropy (FA) and mean diffusivity (MD) values are computed.

RESULTS

Spatial regularization improves the orientation estimates of the two-tensor model in simulations and in human data and estimates agree well with a priori anatomical knowledge.

CONCLUSION

Orientational, anisotropy, and diffusivity information can be resolved in regions of two fiber crossings using full brain coverage scans acquired in less than six minutes.

摘要

目的

解决并规范从采用传统扩散张量成像(DTI)采样方案获取的图像中对两条交叉纤维的方向估计。

材料与方法

部分容积在DTI中会产生伪影。鉴于高角分辨率扩散成像(HARDI)的常规使用仍处于试验阶段,本文提出一种正则化双张量模型,用于从传统DTI数据集中解析纤维交叉。为克服拟合多个张量的问题,采用一种利用纤维交叉区域平面扩散分布的模型。应用正则化方案以减少噪声伪影,由于采集图像数量相对较少,噪声伪影可能较为显著。使用一组基方向将双张量模型转换为多个低维模型。利用松弛标记从这些模型中选择那些能保持相邻区域方向连续性的模型。计算修正的分数各向异性(FA)和平均扩散率(MD)值。

结果

在模拟和人体数据中,空间正则化改善了双张量模型的方向估计,且估计结果与先验解剖学知识吻合良好。

结论

使用在不到六分钟内获取的全脑覆盖扫描,可以在两条纤维交叉区域解析方向、各向异性和扩散率信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验