Skare S, Hedehus M, Moseley M E, Li T Q
Karolinska MR Center, Karolinska Institute, S-171 76 Stockholm, Sweden.
J Magn Reson. 2000 Dec;147(2):340-52. doi: 10.1006/jmre.2000.2209.
Diffusion tensor mapping with MRI can noninvasively track neural connectivity and has great potential for neural scientific research and clinical applications. For each diffusion tensor imaging (DTI) data acquisition scheme, the diffusion tensor is related to the measured apparent diffusion coefficients (ADC) by a transformation matrix. With theoretical analysis we demonstrate that the noise performance of a DTI scheme is dependent on the condition number of the transformation matrix. To test the theoretical framework, we compared the noise performances of different DTI schemes using Monte-Carlo computer simulations and experimental DTI measurements. Both the simulation and the experimental results confirmed that the noise performances of different DTI schemes are significantly correlated with the condition number of the associated transformation matrices. We therefore applied numerical algorithms to optimize a DTI scheme by minimizing the condition number, hence improving the robustness to experimental noise. In the determination of anisotropic diffusion tensors with different orientations, MRI data acquisitions using a single optimum b value based on the mean diffusivity can produce ADC maps with regional differences in noise level. This will give rise to rotational variances of eigenvalues and anisotropy when diffusion tensor mapping is performed using a DTI scheme with a limited number of diffusion-weighting gradient directions. To reduce this type of artifact, a DTI scheme with not only a small condition number but also a large number of evenly distributed diffusion-weighting gradients in 3D is preferable.
磁共振成像(MRI)的扩散张量映射能够无创地追踪神经连接,在神经科学研究和临床应用方面具有巨大潜力。对于每种扩散张量成像(DTI)数据采集方案,扩散张量通过一个变换矩阵与测量得到的表观扩散系数(ADC)相关。通过理论分析,我们证明了DTI方案的噪声性能取决于变换矩阵的条件数。为了验证该理论框架,我们使用蒙特卡洛计算机模拟和实验性DTI测量比较了不同DTI方案的噪声性能。模拟和实验结果均证实,不同DTI方案的噪声性能与相关变换矩阵的条件数显著相关。因此,我们应用数值算法通过最小化条件数来优化DTI方案,从而提高对实验噪声的鲁棒性。在确定具有不同方向的各向异性扩散张量时,基于平均扩散率使用单个最佳b值进行MRI数据采集会产生噪声水平存在区域差异的ADC图。当使用具有有限数量扩散加权梯度方向的DTI方案进行扩散张量映射时,这将导致特征值和各向异性的旋转方差。为了减少这类伪影,一种不仅条件数小而且在三维空间中有大量均匀分布的扩散加权梯度的DTI方案更为可取。