Suppr超能文献

小波神经网络用于解决酚类化合物伏安测定中的信号重叠问题。

Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds.

作者信息

Gutiérrez Juan Manuel, Gutés Albert, Céspedes Francisco, del Valle Manuel, Muñoz Roberto

机构信息

Bioelectronics Section, Department of Electrical Engineering, CINVESTAV, 07360 Mexico DF, Mexico.

出版信息

Talanta. 2008 Jul 15;76(2):373-81. doi: 10.1016/j.talanta.2008.03.009. Epub 2008 Mar 21.

Abstract

Three phenolic compounds, i.e. phenol, catechol and 4-acetamidophenol, were simultaneously determined by voltammetric detection of its oxidation reaction at the surface of an epoxy-graphite transducer. Because of strong signal overlapping, Wavelet Neural Networks (WNN) were used in data treatment, in a combination of chemometrics and electrochemical sensors, already known as the electronic tongue concept. To facilitate calibration, a set of samples (concentration of each phenol ranging from 0.25 to 2.5mM) was prepared automatically by employing a Sequential Injection System. Phenolic compounds could be resolved with good prediction ability, showing correlation coefficients greater than 0.929 when the obtained values were compared with those expected for a set of samples not employed for training.

摘要

通过在环氧石墨传感器表面对三种酚类化合物(即苯酚、邻苯二酚和对乙酰氨基酚)的氧化反应进行伏安检测,实现了对它们的同时测定。由于信号严重重叠,采用了小波神经网络(WNN)进行数据处理,这是化学计量学与电化学传感器相结合的方法,即已为人所知的电子舌概念。为便于校准,使用顺序注射系统自动制备了一组样品(每种酚的浓度范围为0.25至2.5 mM)。酚类化合物能够以良好的预测能力得到分辨,当将所得值与一组未用于训练的样品的预期值进行比较时,相关系数大于0.929。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验