Suppr超能文献

I. VH基因转录产生稳定的二级结构,用于体细胞高频突变过程中的协同诱变。

I. VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation.

作者信息

Wright Barbara E, Schmidt Karen H, Minnick Michael F, Davis Nick

机构信息

Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.

出版信息

Mol Immunol. 2008 Aug;45(13):3589-99. doi: 10.1016/j.molimm.2008.02.030. Epub 2008 Jun 27.

Abstract

During the adaptive immune response, antigen challenge triggers a million-fold increase in mutation rates in the variable-region antibody genes. The frequency of mutation is causally and directly linked to transcription, which provides ssDNA and drives supercoiling that stabilizes secondary structures containing unpaired, intrinsically mutable bases. Simulation analysis of transcription in VH5 reveals a dominant 65nt secondary structure in the non-transcribed strand containing six sites of mutable ssDNA that have also been identified independently in human B cell lines and in primary mouse B cells. This dominant structure inter-converts briefly with less stable structures and is formed repeatedly during transcription, due to periodic pauses and backtracking. In effect, this creates a stable yet dynamic "mutability platform" consisting of ever-changing patterns of unpaired bases that are simultaneously exposed and therefore able to coordinate mutagenesis. Such a complex of secondary structures may be the source of ssDNA for enzyme-based diversification, which ultimately results in high affinity antibodies.

摘要

在适应性免疫反应过程中,抗原刺激会引发可变区抗体基因的突变率增加一百万倍。突变频率与转录存在因果且直接的联系,转录提供单链DNA并驱动超螺旋形成,从而稳定包含未配对的、本质上易变碱基的二级结构。对VH5区域转录的模拟分析揭示了非转录链中一个占主导地位的65个核苷酸的二级结构,其中包含六个可变单链DNA位点,这些位点在人类B细胞系和原代小鼠B细胞中也已被独立鉴定出来。这种主导结构会与不太稳定的结构短暂相互转换,并在转录过程中由于周期性的暂停和回溯而反复形成。实际上,这创建了一个稳定但动态的“易变平台”,该平台由不断变化的未配对碱基模式组成,这些碱基同时暴露,因此能够协调诱变作用。这样一个复杂的二级结构复合体可能是基于酶的多样化过程中单链DNA的来源,最终产生高亲和力抗体。

相似文献

1
I. VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation.
Mol Immunol. 2008 Aug;45(13):3589-99. doi: 10.1016/j.molimm.2008.02.030. Epub 2008 Jun 27.
2
II. Correlations between secondary structure stability and mutation frequency during somatic hypermutation.
Mol Immunol. 2008 Aug;45(13):3600-8. doi: 10.1016/j.molimm.2008.05.012. Epub 2008 Jun 26.
3
Evolution of coordinated mutagenesis and somatic hypermutation in VH5.
Mol Immunol. 2011 Dec;49(3):537-48. doi: 10.1016/j.molimm.2011.10.001. Epub 2011 Nov 5.
4
Mechanisms by which transcription can regulate somatic hypermutation.
Genes Immun. 2004 May;5(3):176-82. doi: 10.1038/sj.gene.6364053.
5
The roles of transcription and genotoxins underlying p53 mutagenesis in vivo.
Carcinogenesis. 2011 Oct;32(10):1559-67. doi: 10.1093/carcin/bgr177. Epub 2011 Jul 29.
6
Somatic hypermutation and VH gene usage in hairy cell leukaemia.
Br J Haematol. 2006 Jun;133(5):504-12. doi: 10.1111/j.1365-2141.2006.06066.x.
7
8
Negative supercoiling creates single-stranded patches of DNA that are substrates for AID-mediated mutagenesis.
PLoS Genet. 2012 Feb;8(2):e1002518. doi: 10.1371/journal.pgen.1002518. Epub 2012 Feb 9.

引用本文的文献

1
Functions and Malfunctions of Mammalian DNA-Cytosine Deaminases.
Chem Rev. 2016 Oct 26;116(20):12688-12710. doi: 10.1021/acs.chemrev.6b00296. Epub 2016 Sep 1.
2
Transcription-associated mutagenesis.
Annu Rev Genet. 2014;48:341-59. doi: 10.1146/annurev-genet-120213-092015. Epub 2014 Sep 10.
3
Kinetic models reveal the in vivo mechanisms of mutagenesis in microbes and man.
Mutat Res. 2013 Apr-Jun;752(2):129-137. doi: 10.1016/j.mrrev.2012.12.003. Epub 2012 Dec 26.
4
Gene Conversion-Like Events in the Diversification of Human Rearranged IGHV3-23*01 Gene Sequences.
Front Immunol. 2012 Jun 15;3:158. doi: 10.3389/fimmu.2012.00158. eCollection 2012.
5
6
Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2479-84. doi: 10.1073/pnas.1120791109. Epub 2012 Jan 30.
7
Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19305-10. doi: 10.1073/pnas.1114522108. Epub 2011 Nov 11.
8
Evolution of coordinated mutagenesis and somatic hypermutation in VH5.
Mol Immunol. 2011 Dec;49(3):537-48. doi: 10.1016/j.molimm.2011.10.001. Epub 2011 Nov 5.
9
Self-catalyzed site-specific depurination of G residues mediated by cruciform extrusion in closed circular DNA plasmids.
J Biol Chem. 2011 Oct 21;286(42):36322-30. doi: 10.1074/jbc.M111.272112. Epub 2011 Aug 25.
10
Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.
J Exp Med. 2010 Jan 18;207(1):141-53. doi: 10.1084/jem.20092238. Epub 2010 Jan 4.

本文引用的文献

1
Identification of somatic hypermutations in the TP53 gene in B-cell chronic lymphocytic leukemia.
Mol Immunol. 2008 Mar;45(5):1525-9. doi: 10.1016/j.molimm.2007.08.017. Epub 2007 Oct 24.
2
Fluctuations, pauses, and backtracking in DNA transcription.
Biophys J. 2008 Jan 15;94(2):334-48. doi: 10.1529/biophysj.107.105767. Epub 2007 Aug 24.
3
Immunoglobulin somatic hypermutation.
Annu Rev Genet. 2007;41:107-20. doi: 10.1146/annurev.genet.41.110306.130340.
4
Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner.
Nature. 2007 Apr 12;446(7137):820-3. doi: 10.1038/nature05701. Epub 2007 Mar 14.
5
Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation.
J Exp Med. 2007 Jan 22;204(1):181-90. doi: 10.1084/jem.20062032. Epub 2007 Jan 16.
6
Somatic hypermutation: activation-induced deaminase for C/G followed by polymerase eta for A/T.
J Exp Med. 2007 Jan 22;204(1):7-10. doi: 10.1084/jem.20062409. Epub 2006 Dec 26.
7
Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences.
J Exp Med. 2006 Dec 25;203(13):2919-28. doi: 10.1084/jem.20061835. Epub 2006 Dec 18.
8
Mechanisms of genotoxin-induced transcription and hypermutation in p53.
Cancer Cell Int. 2006 Dec 1;6:27. doi: 10.1186/1475-2867-6-27.
9
Selection acts on DNA secondary structures to decrease transcriptional mutagenesis.
PLoS Genet. 2006 Nov 3;2(11):e176. doi: 10.1371/journal.pgen.0020176. Epub 2006 Sep 1.
10
Targeting of somatic hypermutation.
Nat Rev Immunol. 2006 Aug;6(8):573-83. doi: 10.1038/nri1896.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验