Suppr超能文献

验证Charlson合并症指数对预测中风功能结局的作用。

Validation of the Charlson Comorbidity Index for predicting functional outcome of stroke.

作者信息

Tessier Annie, Finch Lois, Daskalopoulou Stella S, Mayo Nancy E

机构信息

School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada.

出版信息

Arch Phys Med Rehabil. 2008 Jul;89(7):1276-83. doi: 10.1016/j.apmr.2007.11.049.

Abstract

OBJECTIVE

To determine whether a separate comorbidity index is needed to predict functional outcome after stroke, we compared the predictability of the Charlson Comorbidity Index (CMI) and the Functional Comorbidity Index (FCI) to that of a stroke-specific comorbidity index with function quantified with a measure developed with a Rasch model as outcome.

DESIGN

Two prospective inception cohort studies, in 1996 through 1998 and in 2002 through 2005, with up to 9 months of follow-up.

SETTING

Participants enrolled in 2 studies were recruited from acute care hospitals in the Montreal area.

PARTICIPANTS

For study one, 1027 persons with a first stroke discharged into the community were eligible; the 437 who were interviewed a second time at 6 months were included in the analysis. In study two, 235 of 262 patients with stroke were enrolled.

INTERVENTIONS

Not applicable.

MAIN OUTCOME MEASURES

To predict recovery, we developed 3 stroke-specific comorbidity algorithms based on the estimated strength of association between comorbidities and stroke function. The various indices were compared on the basis of their predictive ability with a c statistic.

RESULTS

In study 1, the c statistics were .758, .763, .766, and .763 for the stroke-specific algorithms 1, 2, and 3 and the CMI, respectively. In study 2, the c statistics were .680, .700, .704, .714, and .714 for the algorithms 1, 2, and 3, the CMI, and the FCI, respectively.

CONCLUSIONS

For purposes of case-mix adjustment, the CMI seems to be more than adequate.

摘要

目的

为了确定预测卒中后功能结局是否需要一个单独的合并症指数,我们将查尔森合并症指数(CMI)和功能合并症指数(FCI)的预测能力与一个以Rasch模型开发的测量方法量化功能的卒中特异性合并症指数的预测能力进行了比较。

设计

两项前瞻性起始队列研究,分别在1996年至1998年以及2002年至2005年进行,随访时间长达9个月。

地点

参与两项研究的参与者均从蒙特利尔地区的急性护理医院招募。

参与者

在第一项研究中,1027名首次卒中后出院进入社区的患者符合条件;其中437名在6个月时接受第二次访谈的患者纳入分析。在第二项研究中,262名卒中患者中有235名被纳入。

干预措施

不适用。

主要结局指标

为了预测恢复情况,我们基于合并症与卒中功能之间估计的关联强度开发了3种卒中特异性合并症算法。根据各指数的预测能力,用c统计量对它们进行比较。

结果

在研究1中,卒中特异性算法1、2、3以及CMI的c统计量分别为0.758、0.763、0.766和0.763。在研究2中,算法1、2、3、CMI以及FCI的c统计量分别为0.680、0.700、0.704、0.714和0.714。

结论

出于病例组合调整的目的,CMI似乎就足够了。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验