Suppr超能文献

使用支持向量机和人工神经网络模型从超声成像估计腕关节角度

Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models.

作者信息

Xie Hong-Bo, Zheng Yong-Ping, Guo Jing-Yi, Chen Xin, Shi Jun

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Med Eng Phys. 2009 Apr;31(3):384-91. doi: 10.1016/j.medengphy.2008.05.005. Epub 2008 Jun 30.

Abstract

Sonomyography (SMG) is the signal we previously termed to describe muscle contraction using real-time muscle thickness changes extracted from ultrasound images. In this paper, we used least squares support vector machine (LS-SVM) and artificial neural networks (ANN) to predict dynamic wrist angles from SMG signals. Synchronized wrist angle and SMG signals from the extensor carpi radialis muscles of five normal subjects were recorded during the process of wrist extension and flexion at rates of 15, 22.5, and 30cycles/min, respectively. An LS-SVM model together with back-propagation (BP) and radial basis function (RBF) ANN was developed and trained using the data sets collected at the rate of 22.5cycles/min for each subject. The established LS-SVM and ANN models were then used to predict the wrist angles for the remained data sets obtained at different extension rates. It was found that the wrist angle signals collected at different rates could be accurately predicted by all the three methods, based on the values of root mean square difference (RMSD<0.2) and the correlation coefficient (CC>0.98), with the performance of the LS-SVM model being significantly better (RMSD<0.15, CC>0.99) than those of its counterparts. The results also demonstrated that the models established for the rate of 22.5cycles/min could be used for the prediction from SMG data sets obtained under other extension rates. It was concluded that the wrist angle could be precisely estimated from the thickness changes of the extensor carpi radialis using LS-SVM or ANN models.

摘要

超声肌动图(SMG)是我们之前用来描述肌肉收缩的信号,它利用从超声图像中提取的实时肌肉厚度变化来实现。在本文中,我们使用最小二乘支持向量机(LS-SVM)和人工神经网络(ANN)从SMG信号预测动态腕关节角度。在五名正常受试者的桡侧腕伸肌进行腕关节伸展和屈曲过程中,分别以15、22.5和30次/分钟的速率同步记录腕关节角度和SMG信号。使用每个受试者以22.5次/分钟速率收集的数据集开发并训练了一个LS-SVM模型以及反向传播(BP)和径向基函数(RBF)人工神经网络。然后使用建立的LS-SVM和人工神经网络模型预测在不同伸展速率下获得的其余数据集的腕关节角度。结果发现,基于均方根差(RMSD<0.2)和相关系数(CC>0.98)的值,所有这三种方法都能准确预测以不同速率收集的腕关节角度信号,其中LS-SVM模型的性能明显优于其他模型(RMSD<0.15,CC>0.99)。结果还表明,为22.5次/分钟速率建立的模型可用于预测从其他伸展速率下获得的SMG数据集中的腕关节角度。得出的结论是,使用LS-SVM或人工神经网络模型可以根据桡侧腕伸肌的厚度变化精确估计腕关节角度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验