Suppr超能文献

超声自动测量骨骼肌厚度:两种增强方法的评估。

Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.

出版信息

Biomed Eng Online. 2013 Jan 22;12:6. doi: 10.1186/1475-925X-12-6.

Abstract

BACKGROUND

Ultrasonography is a convenient technique to investigate muscle properties and has been widely used to look into muscle functions since it is non-invasive and real-time. Muscle thickness, a quantification which can effectively reflect the muscle activities during muscle contraction, is an important measure for musculoskeletal studies using ultrasonography. The traditional manual operation to read muscle thickness is subjective and time-consuming, therefore a number of studies have focused on the automatic estimation of muscle fascicle orientation and muscle thickness, to which the speckle noises in ultrasound images could be the major obstacle. There have been two popular methods proposed to enhance the hyperechoic regions over the speckles in ultrasonography, namely Gabor Filtering and Multiscale Vessel Enhancement Filtering (MVEF).

METHODS

A study on gastrocnemius muscle is conducted to quantitatively evaluate whether and how these two methods could help the automatic estimation of the muscle thickness based on Revoting Hough Transform (RVHT). The muscle thickness results obtained from each of the two methods are compared with the results from manual measurement, respectively. Data from an aged subject with cerebral infarction is also studied.

RESULTS

It's shown in the experiments that, Gabor Filtering and MVEF can both enable RVHT to generate comparable results of muscle thickness to those by manual drawing (mean ± SD, 1.45 ± 0.48 and 1.38 ± 0.56 mm respectively). However, the MVEF method requires much less computation than Gabor Filtering.

CONCLUSIONS

Both methods, as preprocessing procedure can enable RVHT the automatic estimation of muscle thickness and MVEF is believed to be a better choice for real-time applications.

摘要

背景

超声检查是一种方便的技术,可用于研究肌肉特性,由于其非侵入性和实时性,已被广泛用于研究肌肉功能。肌肉厚度是一种有效的量化指标,可反映肌肉收缩期间的肌肉活动,是肌肉骨骼超声研究的重要指标。传统的手动读取肌肉厚度的方法具有主观性和耗时性,因此,许多研究都集中在自动估计肌束方向和肌肉厚度上,而超声图像中的斑点噪声可能是主要障碍。已经提出了两种流行的方法来增强超声中的超回声区域的斑点,即 Gabor 滤波和多尺度血管增强滤波(MVEF)。

方法

对腓肠肌进行了研究,以定量评估这两种方法是否以及如何基于重投影霍夫变换(RVHT)帮助自动估计肌肉厚度。分别比较了这两种方法获得的肌肉厚度结果与手动测量的结果。还研究了患有脑梗塞的老年患者的数据。

结果

实验表明,Gabor 滤波和 MVEF 都可以使 RVHT 产生与手动绘制相当的肌肉厚度结果(平均值±标准差,分别为 1.45±0.48 和 1.38±0.56 毫米)。然而,MVEF 方法的计算量比 Gabor 滤波要少得多。

结论

这两种方法都可以作为预处理过程,使 RVHT 能够自动估计肌肉厚度,而 MVEF 被认为是实时应用的更好选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4215/3626569/52ca5eacfc80/1475-925X-12-6-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验