Quemeneur Francois, Rinaudo Marguerite, Pépin-Donat Brigitte
Laboratoire Electronique Moleculaire Organique et Hybride/UMR 5819 SPrAM, CEA-CNRS-UJF/INAC/CEA-Grenoble, 38054 Grenoble Cedex 9, France.
Biomacromolecules. 2008 Aug;9(8):2237-43. doi: 10.1021/bm800400y. Epub 2008 Jul 1.
In this paper we extend our previous experimental work on interaction between polyelectrolytes and liposomes. First, the adsorption of chitosan and alkylated chitosan (cationic polyelectrolytes) with different alkyl chain lengths on lipid membranes of liposomes is examined. The amount of both chitosans adsorbed remains the same even if more alkylated polysaccharide has to be added to get saturation if compared with unmodified chitosan. It is demonstrated that alkyl chains do not specifically interact with the lipid bilayer and that electrostatic interaction mechanism governs the chitosan adsorption. The difference observed between unmodified and alkylated chitosans behavior to reach the plateau can be interpreted in terms of a competition between electrostatic polyelectrolyte adsorption on lipid bilayer and hydrophobic autoassociation in solution (which depends on the alkyl chain length). Second, interaction of liposomes with hyaluronan (HA) and alkylated hyaluronan (anionic polyelectrolytes) is analyzed. The same types of results as discussed for chitosan are obtained, but in this case, autoassociation of alkylated HA only occurs in the presence of salt excess. Finally, a first positive layer of chitosan is adsorbed on the lipid membrane, followed by a second negative layer of HA at three different pHs. This kind of multilayer decoration allows the control of the net charge of the composite vesicles. A general conclusion is that whatever the pH and, consequently, the initial charge of the liposomes, chitosan adsorption gives positively charged composite systems, which upon addition of hyaluronan, give rise to negatively charged composite vesicles.
在本文中,我们扩展了之前关于聚电解质与脂质体相互作用的实验工作。首先,研究了不同烷基链长度的壳聚糖和烷基化壳聚糖(阳离子聚电解质)在脂质体脂质膜上的吸附情况。与未修饰的壳聚糖相比,即使需要添加更多的烷基化多糖才能达到饱和,两种壳聚糖的吸附量仍保持相同。结果表明,烷基链与脂质双层没有特异性相互作用,静电相互作用机制决定了壳聚糖的吸附。未修饰和烷基化壳聚糖达到吸附平台的行为差异,可以用脂质双层上静电聚电解质吸附与溶液中疏水自缔合(取决于烷基链长度)之间的竞争来解释。其次,分析了脂质体与透明质酸(HA)和烷基化透明质酸(阴离子聚电解质)的相互作用。得到了与壳聚糖讨论的相同类型的结果,但在这种情况下,烷基化HA的自缔合仅在盐过量的情况下发生。最后,在脂质膜上吸附一层壳聚糖正层,随后在三个不同pH值下吸附一层HA负层。这种多层修饰允许控制复合囊泡的净电荷。一个普遍的结论是,无论pH值如何,因此脂质体的初始电荷如何,壳聚糖吸附都会产生带正电荷的复合系统,在添加透明质酸后,会产生带负电荷的复合囊泡。