Suppr超能文献

关于跨膜螺旋中带电荷精氨酸侧链的热力学稳定性

On the thermodynamic stability of a charged arginine side chain in a transmembrane helix.

作者信息

Dorairaj Sudha, Allen Toby W

机构信息

Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4943-8. doi: 10.1073/pnas.0610470104. Epub 2007 Mar 13.

Abstract

Biological membranes consist of bilayer arrangements of lipids forming a hydrophobic core that presents a physical barrier to all polar and charged molecules. This long-held notion has recently been challenged by biological translocon-based experiments that report small apparent free energies to insert charged side chains near the center of a transmembrane (TM) helix. We have carried out fully atomistic simulations to provide the free-energy profile for moving a TM helix containing a protonated Arg side chain across a lipid bilayer. Our results reveal the fundamental thermodynamics governing the stability of charged side chains in membranes and the microscopic interactions involved. Despite local membrane deformations, where large amounts of water and lipid head groups are pulled into the bilayer to interact with Arg, the free-energy barrier is 17 kcal/mol. We provide a rationale for the differences in our microscopic free energies and cell biological experiments using free-energy calculations that indicate that a protonated Arg at the central residue of a TM helix of the Leader peptidase might reside close to the interface and not at the membrane center. Our findings have implications for the gating mechanisms of voltage-gated ion channels, suggesting that movements of protonated Arg residues through the membrane will be prohibited.

摘要

生物膜由脂质的双层排列组成,形成一个疏水核心,对所有极性和带电分子构成物理屏障。这一长期以来的观念最近受到了基于生物转运体的实验的挑战,这些实验报告称,将带电侧链插入跨膜(TM)螺旋中心附近时,表观自由能较小。我们进行了全原子模拟,以提供一个包含质子化精氨酸侧链的TM螺旋穿过脂质双层的自由能分布。我们的结果揭示了控制膜中带电侧链稳定性的基本热力学以及所涉及的微观相互作用。尽管存在局部膜变形,即大量的水和脂质头部基团被拉入双层与精氨酸相互作用,但自由能垒为17千卡/摩尔。我们利用自由能计算为微观自由能和细胞生物学实验中的差异提供了一个解释,结果表明,引导肽酶TM螺旋中心残基处的质子化精氨酸可能位于靠近界面处,而不是膜中心。我们的发现对电压门控离子通道的门控机制有影响,表明质子化精氨酸残基穿过膜的运动将被禁止。

相似文献

2
Is arginine charged in a membrane?精氨酸在细胞膜中带电荷吗?
Biophys J. 2008 Jan 15;94(2):L11-3. doi: 10.1529/biophysj.107.121566. Epub 2007 Nov 2.
5
Membrane insertion of a voltage sensor helix.电压传感器螺旋的膜插入。
Biophys J. 2011 Jan 19;100(2):410-9. doi: 10.1016/j.bpj.2010.12.3682.
8
The importance of membrane defects-lessons from simulations.膜缺陷的重要性:模拟研究的启示。
Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729. Epub 2014 Jun 3.
10

引用本文的文献

2
The structural basis of the G protein-coupled receptor and ion channel axis.G蛋白偶联受体与离子通道轴的结构基础。
Curr Res Struct Biol. 2025 Feb 18;9:100165. doi: 10.1016/j.crstbi.2025.100165. eCollection 2025 Jun.

本文引用的文献

1
Has the code for protein translocation been broken?蛋白质转运的密码被破解了吗?
Trends Biochem Sci. 2006 Apr;31(4):192-6. doi: 10.1016/j.tibs.2006.02.002. Epub 2006 Mar 10.
2
Probing ion-channel pores one proton at a time.一次探测一个质子的离子通道孔。
Nature. 2005 Dec 15;438(7070):975-80. doi: 10.1038/nature04293.
4
Interface connections of a transmembrane voltage sensor.跨膜电压传感器的接口连接
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15059-64. doi: 10.1073/pnas.0507618102. Epub 2005 Oct 10.
7
Membrane insertion of a potassium-channel voltage sensor.钾通道电压感受器的膜插入
Science. 2005 Mar 4;307(5714):1427. doi: 10.1126/science.1109176. Epub 2005 Jan 27.
9
A quantitative assessment of models for voltage-dependent gating of ion channels.离子通道电压依赖性门控模型的定量评估。
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17640-5. doi: 10.1073/pnas.0408116101. Epub 2004 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验