Suppr超能文献

一种计算物体运动的视网膜回路。

A retinal circuit that computes object motion.

作者信息

Baccus Stephen A, Olveczky Bence P, Manu Mihai, Meister Markus

机构信息

Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

J Neurosci. 2008 Jul 2;28(27):6807-17. doi: 10.1523/JNEUROSCI.4206-07.2008.

Abstract

Certain ganglion cells in the retina respond sensitively to differential motion between the receptive field center and surround, as produced by an object moving over the background, but are strongly suppressed by global image motion, as produced by the observer's head or eye movements. We investigated the circuit basis for this object motion sensitive (OMS) response by recording intracellularly from all classes of retinal interneurons while simultaneously recording the spiking output of many ganglion cells. Fast, transient bipolar cells respond linearly to motion in the receptive field center. The synaptic output from their terminals is rectified and then pooled by the OMS ganglion cell. A type of polyaxonal amacrine cell is driven by motion in the surround, again via pooling of rectified inputs, but from a different set of bipolar cell terminals. By direct intracellular current injection, we found that these polyaxonal amacrine cells selectively suppress the synaptic input of OMS ganglion cells. A quantitative model of these circuit elements and their interactions explains how an important visual computation is accomplished by retinal neurons and synapses.

摘要

视网膜中的某些神经节细胞对感受野中心与周边之间的差异运动敏感,这种差异运动由物体在背景上移动产生,但会被全局图像运动强烈抑制,全局图像运动由观察者的头部或眼睛运动产生。我们通过对所有类型的视网膜中间神经元进行细胞内记录,同时记录许多神经节细胞的脉冲输出,来研究这种物体运动敏感(OMS)反应的电路基础。快速、瞬态双极细胞对感受野中心的运动呈线性反应。它们终末的突触输出经过整流,然后由OMS神经节细胞汇总。一种多轴突无长突细胞由周边的运动驱动,同样是通过整流输入的汇总,但来自不同的双极细胞终末集合。通过直接细胞内电流注入,我们发现这些多轴突无长突细胞选择性地抑制OMS神经节细胞的突触输入。这些电路元件及其相互作用的定量模型解释了视网膜神经元和突触是如何完成一项重要的视觉计算的。

相似文献

1
A retinal circuit that computes object motion.
J Neurosci. 2008 Jul 2;28(27):6807-17. doi: 10.1523/JNEUROSCI.4206-07.2008.
2
Retinal adaptation to object motion.
Neuron. 2007 Nov 21;56(4):689-700. doi: 10.1016/j.neuron.2007.09.030.
3
The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.
J Neurosci. 2015 Sep 30;35(39):13336-50. doi: 10.1523/JNEUROSCI.1712-15.2015.
4
Cellular mechanisms for direction selectivity in the retina.
Neuron. 2007 Jul 19;55(2):179-86. doi: 10.1016/j.neuron.2007.07.001.
5
The neural circuit mechanisms underlying the retinal response to motion reversal.
J Neurosci. 2014 Nov 19;34(47):15557-75. doi: 10.1523/JNEUROSCI.1460-13.2014.
6
Amacrine cell contributions to red-green color opponency in central primate retina: a model study.
Vis Neurosci. 2007 Jul-Aug;24(4):535-47. doi: 10.1017/S0952523807070502.
7
Neural Mechanisms of Motion Processing in the Mammalian Retina.
Annu Rev Vis Sci. 2018 Sep 15;4:165-192. doi: 10.1146/annurev-vision-091517-034048. Epub 2018 Aug 10.
8
Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell.
J Neurophysiol. 2012 Apr;107(7):1795-807. doi: 10.1152/jn.00924.2011. Epub 2011 Dec 28.
9
Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit.
Nature. 2011 Jan 20;469(7330):407-10. doi: 10.1038/nature09711. Epub 2010 Dec 19.

引用本文的文献

3
Preference-independent saliency map in the mouse superior colliculus.
Commun Biol. 2025 Apr 4;8(1):565. doi: 10.1038/s42003-025-08006-x.
4
Retinal ganglion cells encode the direction of motion outside their classical receptive field.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415223122. doi: 10.1073/pnas.2415223122. Epub 2024 Dec 30.
5
Stimulus-invariant aspects of the retinal code drive discriminability of natural scenes.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2313676121. doi: 10.1073/pnas.2313676121. Epub 2024 Dec 19.
6
Modular interneuron circuits control motion sensitivity in the mouse retina.
Nat Commun. 2023 Nov 27;14(1):7746. doi: 10.1038/s41467-023-43382-0.
7
IRIS: Integrated Retinal Functionality in Image Sensors.
Front Neurosci. 2023 Sep 1;17:1241691. doi: 10.3389/fnins.2023.1241691. eCollection 2023.
9
Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells.
Nat Commun. 2022 Sep 26;13(1):5575. doi: 10.1038/s41467-022-32761-8.
10
Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina.
Nat Commun. 2022 Sep 26;13(1):5574. doi: 10.1038/s41467-022-32762-7.

本文引用的文献

1
Retinal adaptation to object motion.
Neuron. 2007 Nov 21;56(4):689-700. doi: 10.1016/j.neuron.2007.09.030.
2
Retinal ganglion cells can rapidly change polarity from Off to On.
PLoS Biol. 2007 Mar;5(3):e65. doi: 10.1371/journal.pbio.0050065.
3
Functional organization of ganglion cells in the salamander retina.
J Neurophysiol. 2006 Apr;95(4):2277-92. doi: 10.1152/jn.00928.2005. Epub 2005 Nov 23.
4
Fast readout of object identity from macaque inferior temporal cortex.
Science. 2005 Nov 4;310(5749):863-6. doi: 10.1126/science.1117593.
5
The type 1 polyaxonal amacrine cells of the rabbit retina: a tracer-coupling study.
Vis Neurosci. 2004 Mar-Apr;21(2):145-55. doi: 10.1017/s0952523804042063.
6
Microsaccades keep the eyes' balance during fixation.
Psychol Sci. 2004 Jun;15(6):431-6. doi: 10.1111/j.0956-7976.2004.00697.x.
7
Types of bipolar cells in the mouse retina.
J Comp Neurol. 2004 Jan 26;469(1):70-82. doi: 10.1002/cne.10985.
8
Coding of auditory space.
Annu Rev Neurosci. 2003;26:31-55. doi: 10.1146/annurev.neuro.26.041002.131123.
9
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
10
Segregation of object and background motion in the retina.
Nature. 2003 May 22;423(6938):401-8. doi: 10.1038/nature01652. Epub 2003 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验