Suppr超能文献

视网膜对物体运动的适应。

Retinal adaptation to object motion.

作者信息

Olveczky Bence P, Baccus Stephen A, Meister Markus

机构信息

Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.

出版信息

Neuron. 2007 Nov 21;56(4):689-700. doi: 10.1016/j.neuron.2007.09.030.

Abstract

Due to fixational eye movements, the image on the retina is always in motion, even when one views a stationary scene. When an object moves within the scene, the corresponding patch of retina experiences a different motion trajectory than the surrounding region. Certain retinal ganglion cells respond selectively to this condition, when the motion in the cell's receptive field center is different from that in the surround. Here we show that this response is strongest at the very onset of differential motion, followed by gradual adaptation with a time course of several seconds. Different subregions of a ganglion cell's receptive field can adapt independently. The circuitry responsible for differential motion adaptation lies in the inner retina. Several candidate mechanisms were tested, and the adaptation most likely results from synaptic depression at the synapse from bipolar to ganglion cell. Similar circuit mechanisms may act more generally to emphasize novel features of a visual stimulus.

摘要

由于眼球的固视运动,即使在观看静止场景时,视网膜上的图像也总是处于运动状态。当场景中的物体移动时,视网膜上相应的区域会经历与周围区域不同的运动轨迹。当细胞感受野中心的运动与周围不同时,某些视网膜神经节细胞会对这种情况做出选择性反应。在这里我们表明,这种反应在差异运动开始时最强,随后在几秒钟的时间进程中逐渐适应。神经节细胞感受野的不同子区域可以独立适应。负责差异运动适应的神经回路位于视网膜内层。我们测试了几种可能的机制,这种适应最有可能是由双极细胞与神经节细胞之间突触的突触抑制引起的。类似的神经回路机制可能更普遍地起作用,以突出视觉刺激的新特征。

相似文献

1
Retinal adaptation to object motion.
Neuron. 2007 Nov 21;56(4):689-700. doi: 10.1016/j.neuron.2007.09.030.
2
A retinal circuit that computes object motion.
J Neurosci. 2008 Jul 2;28(27):6807-17. doi: 10.1523/JNEUROSCI.4206-07.2008.
4
The Synaptic and Morphological Basis of Orientation Selectivity in a Polyaxonal Amacrine Cell of the Rabbit Retina.
J Neurosci. 2015 Sep 30;35(39):13336-50. doi: 10.1523/JNEUROSCI.1712-15.2015.
5
Retinal ganglion cells--spatial organization of the receptive field reduces temporal redundancy.
Eur J Neurosci. 2008 Sep;28(5):914-23. doi: 10.1111/j.1460-9568.2008.06394.x. Epub 2008 Aug 8.
6
Functional circuitry for peripheral suppression in Mammalian Y-type retinal ganglion cells.
J Neurophysiol. 2007 Jun;97(6):4327-40. doi: 10.1152/jn.01091.2006. Epub 2007 Apr 25.
7
Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells.
J Neurosci. 2007 Mar 7;27(10):2636-45. doi: 10.1523/JNEUROSCI.4610-06.2007.
8
Segregation of object and background motion in the retina.
Nature. 2003 May 22;423(6938):401-8. doi: 10.1038/nature01652. Epub 2003 May 11.

引用本文的文献

2
Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells.
Nat Commun. 2022 Sep 26;13(1):5575. doi: 10.1038/s41467-022-32761-8.
3
Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina.
Nat Commun. 2022 Sep 26;13(1):5574. doi: 10.1038/s41467-022-32762-7.
4
Impact of Photoreceptor Loss on Retinal Circuitry.
Annu Rev Vis Sci. 2021 Sep 15;7:105-128. doi: 10.1146/annurev-vision-100119-124713.
6
Adjudicating Between Local and Global Architectures of Predictive Processing in the Subcortical Auditory Pathway.
Front Neural Circuits. 2021 Mar 12;15:644743. doi: 10.3389/fncir.2021.644743. eCollection 2021.
7
High Contrast Allows the Retina to Compute More Than Just Contrast.
Front Cell Neurosci. 2021 Jan 15;14:595193. doi: 10.3389/fncel.2020.595193. eCollection 2020.
8
Low rank mechanisms underlying flexible visual representations.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29321-29329. doi: 10.1073/pnas.2005797117.
9
What the salamander eye has been telling the vision scientist's brain.
Semin Cell Dev Biol. 2020 Oct;106:61-71. doi: 10.1016/j.semcdb.2020.04.010. Epub 2020 Apr 29.
10

本文引用的文献

1
Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells.
Neuron. 2006 May 4;50(3):453-64. doi: 10.1016/j.neuron.2006.03.039.
2
Dynamic predictive coding by the retina.
Nature. 2005 Jul 7;436(7047):71-7. doi: 10.1038/nature03689.
3
Input-driven components of spike-frequency adaptation can be unmasked in vivo.
J Neurosci. 2004 Aug 25;24(34):7435-44. doi: 10.1523/JNEUROSCI.0398-04.2004.
4
Microsaccades keep the eyes' balance during fixation.
Psychol Sci. 2004 Jun;15(6):431-6. doi: 10.1111/j.0956-7976.2004.00697.x.
5
Coordinate synaptic mechanisms contributing to olfactory cortical adaptation.
J Neurosci. 2004 Jan 21;24(3):652-60. doi: 10.1523/JNEUROSCI.4220-03.2004.
7
Motion onset captures attention.
Psychol Sci. 2003 Sep;14(5):427-32. doi: 10.1111/1467-9280.01458.
8
New directions in retinal research.
Trends Neurosci. 2003 Jul;26(7):379-85. doi: 10.1016/S0166-2236(03)00167-X.
9
Segregation of object and background motion in the retina.
Nature. 2003 May 22;423(6938):401-8. doi: 10.1038/nature01652. Epub 2003 May 11.
10
Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells.
J Neurosci. 2003 Feb 15;23(4):1506-16. doi: 10.1523/JNEUROSCI.23-04-01506.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验