Krueger Frank, Spampinato Maria Vittoria, Pardini Matteo, Pajevic Sinisa, Wood Jacqueline N, Weiss George H, Landgraf Steffen, Grafman Jordan
Cognitive Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1440, USA.
Neuroreport. 2008 Jul 16;19(11):1095-9. doi: 10.1097/WNR.0b013e328303fd85.
Only a subset of adults acquires specific advanced mathematical skills, such as integral calculus. The representation of more sophisticated mathematical concepts probably evolved from basic number systems; however its neuroanatomical basis is still unknown. Using fMRI, we investigated the neural basis of integral calculus while healthy participants were engaged in an integration verification task. Solving integrals activated a left-lateralized cortical network including the horizontal intraparietal sulcus, posterior superior parietal lobe, posterior cingulate gyrus, and dorsolateral prefrontal cortex. Our results indicate that solving of more abstract and sophisticated mathematical facts, such as calculus integrals, elicits a pattern of brain activation similar to the cortical network engaged in basic numeric comparison, quantity manipulation, and arithmetic problem solving.
只有一部分成年人掌握了特定的高等数学技能,比如积分学。更复杂数学概念的表征可能是从基本数字系统演变而来的;然而,其神经解剖学基础仍然未知。我们使用功能磁共振成像(fMRI)技术,在健康参与者进行积分验证任务时,研究了积分学的神经基础。求解积分激活了一个左侧化的皮质网络,包括水平顶内沟、顶叶后上叶、后扣带回和背外侧前额叶皮质。我们的结果表明,解决更抽象、更复杂的数学问题,如微积分积分,会引发一种大脑激活模式,类似于参与基本数字比较、数量运算和算术问题解决的皮质网络所引发的模式。