Suppr超能文献

格斯特曼综合征潜在解剖学基础的连接模型。

A connectivity model of the anatomic substrates underlying Gerstmann syndrome.

作者信息

Shahab Qazi S, Young Isabella M, Dadario Nicholas B, Tanglay Onur, Nicholas Peter J, Lin Yueh-Hsin, Fonseka R Dineth, Yeung Jacky T, Bai Michael Y, Teo Charles, Doyen Stephane, Sughrue Michael E

机构信息

School of Medicine, University of New South Wales, 2052 Sydney, Australia.

Omniscient Neurotechnology, Sydney 2000, Australia.

出版信息

Brain Commun. 2022 May 27;4(3):fcac140. doi: 10.1093/braincomms/fcac140. eCollection 2022.

Abstract

The Gerstmann syndrome is a constellation of neurological deficits that include agraphia, acalculia, left-right discrimination and finger agnosia. Despite a growing interest in this clinical phenomenon, there remains controversy regarding the specific neuroanatomic substrates involved. Advancements in data-driven, computational modelling provides an opportunity to create a unified cortical model with greater anatomic precision based on underlying structural and functional connectivity across complex cognitive domains. A literature search was conducted for healthy task-based functional MRI and PET studies for the four cognitive domains underlying Gerstmann's tetrad using the electronic databases PubMed, Medline, and BrainMap Sleuth (2.4). Coordinate-based, meta-analytic software was utilized to gather relevant regions of interest from included studies to create an activation likelihood estimation (ALE) map for each cognitive domain. Machine-learning was used to match activated regions of the ALE to the corresponding parcel from the cortical parcellation scheme previously published under the Human Connectome Project (HCP). Diffusion spectrum imaging-based tractography was performed to determine the structural connectivity between relevant parcels in each domain on 51 healthy subjects from the HCP database. Ultimately 102 functional MRI studies met our inclusion criteria. A frontoparietal network was found to be involved in the four cognitive domains: calculation, writing, finger gnosis, and left-right orientation. There were three parcels in the left hemisphere, where the ALE of at least three cognitive domains were found to be overlapping, specifically the anterior intraparietal area, area 7 postcentral (7PC) and the medial intraparietal sulcus. These parcels surround the anteromedial portion of the intraparietal sulcus. Area 7PC was found to be involved in all four domains. These regions were extensively connected in the intraparietal sulcus, as well as with a number of surrounding large-scale brain networks involved in higher-order functions. We present a tractographic model of the four neural networks involved in the functions which are impaired in Gerstmann syndrome. We identified a 'Gerstmann Core' of extensively connected functional regions where at least three of the four networks overlap. These results provide clinically actionable and precise anatomic information which may help guide clinical translation in this region, such as during resective brain surgery in or near the intraparietal sulcus, and provides an empiric basis for future study.

摘要

格斯特曼综合征是一组神经功能缺陷,包括失写症、失算症、左右辨别障碍和手指失认症。尽管对这一临床现象的兴趣日益浓厚,但对于所涉及的具体神经解剖学基质仍存在争议。数据驱动的计算建模的进展提供了一个机会,可以基于跨复杂认知领域的潜在结构和功能连接,创建一个具有更高解剖精度的统一皮质模型。使用电子数据库PubMed、Medline和BrainMap Sleuth(2.4),对基于健康任务的功能性MRI和PET研究进行了文献检索,以研究格斯特曼四联症背后的四个认知领域。利用基于坐标的元分析软件,从纳入的研究中收集相关感兴趣区域,为每个认知领域创建激活可能性估计(ALE)图。使用机器学习将ALE的激活区域与先前在人类连接体计划(HCP)下发布的皮质分割方案中的相应脑区进行匹配。对来自HCP数据库的51名健康受试者进行基于扩散光谱成像的纤维束成像,以确定每个领域中相关脑区之间的结构连接。最终,102项功能性MRI研究符合我们的纳入标准。发现一个额顶叶网络参与了四个认知领域:计算、书写、手指识别和左右定向。在左半球有三个脑区,发现至少三个认知领域的ALE重叠,具体为顶内前区、中央后7区(7PC)和顶内沟内侧。这些脑区围绕着顶内沟的前内侧部分。发现7PC区参与了所有四个领域。这些区域在顶内沟以及与许多参与高级功能的周围大规模脑网络中广泛连接。我们提出了一个涉及格斯特曼综合征中受损功能的四个神经网络的纤维束成像模型。我们确定了一个由广泛连接的功能区域组成的“格斯特曼核心”,其中四个网络中至少有三个重叠。这些结果提供了临床上可操作的精确解剖学信息,可能有助于指导该区域的临床转化,例如在顶内沟或其附近进行切除性脑手术时,并为未来的研究提供了实证基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/093f/9189613/4d9f7dff1801/fcac140ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验