Fürstner Alois, Martin Rubén, Krause Helga, Seidel Günter, Goddard Richard, Lehmann Christian W
Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany.
J Am Chem Soc. 2008 Jul 9;130(27):8773-87. doi: 10.1021/ja801466t.
A series of unprecedented organoiron complexes of the formal oxidation states -2, 0, +1, +2, and +3 is presented, which are largely devoid of stabilizing ligands and, in part, also electronically unsaturated (14-, 16-, 17- and 18-electron counts). Specifically, it is shown that nucleophiles unable to undergo beta-hydride elimination, such as MeLi, PhLi, or PhMgBr, rapidly reduce Fe(3+) to Fe(2+) and then exhaustively alkylate the metal center. The resulting homoleptic organoferrate complexes [(Me 4Fe)(MeLi)][Li(OEt 2)] 2 ( 3) and [Ph 4Fe][Li(Et 2O) 2][Li(1,4-dioxane)] ( 5) could be characterized by X-ray crystal structure analysis. However, these exceptionally sensitive compounds turned out to be only moderately nucleophilic, transferring their organic ligands to activated electrophiles only, while being unable to alkylate (hetero)aryl halides unless they are very electron deficient. In striking contrast, Grignard reagents bearing alkyl residues amenable to beta-hydride elimination reduce FeX n ( n = 2, 3) to clusters of the formal composition [Fe(MgX) 2] n . The behavior of these intermetallic species can be emulated by structurally well-defined lithium ferrate complexes of the type [Fe(C 2H 4) 4][Li(tmeda)] 2 ( 8), [Fe(cod) 2][Li(dme)] 2 ( 9), [CpFe(C 2H 4) 2][Li(tmeda)] ( 7), [CpFe(cod)][Li(dme)] ( 11), or [Cp*Fe(C 2H 4) 2][Li(tmeda)] ( 14). Such electron-rich complexes, which are distinguished by short intermetallic Fe-Li bonds, were shown to react with aryl chlorides and allyl halides; the structures and reactivity patterns of the resulting organoiron compounds provide first insights into the elementary steps of low valent iron-catalyzed cross coupling reactions of aryl, alkyl, allyl, benzyl, and propargyl halides with organomagnesium reagents. However, the acquired data suggest that such C-C bond formations can occur, a priori, along different catalytic cycles shuttling between metal centers of the formal oxidation states Fe(+1)/Fe(+3), Fe(0)/Fe(+2), and Fe(-2)/Fe(0). Since these different manifolds are likely interconnected, an unambiguous decision as to which redox cycle dominates in solution remains difficult, even though iron complexes of the lowest accessible formal oxidation states promote the reactions most effectively.
本文报道了一系列形式氧化态为-2、0、+1、+2和+3的前所未有的有机铁配合物,这些配合物大多没有稳定化配体,部分还存在电子不饱和情况(电子计数分别为14、16、17和18)。具体而言,研究表明,无法进行β-氢消除的亲核试剂,如甲基锂、苯基锂或苯基溴化镁,能迅速将Fe(3+)还原为Fe(2+),然后使金属中心完全烷基化。通过X射线晶体结构分析对所得的均配有机铁酸盐配合物[(Me4Fe)(MeLi)][Li(OEt2)]2(3)和[Ph4Fe][Li(Et2O)2][Li(1,4 - 二氧六环)](5)进行了表征。然而,这些异常敏感的化合物结果显示出中等亲核性,仅能将其有机配体转移至活化的亲电试剂,而无法使(杂)芳基卤化物烷基化,除非它们具有很强的缺电子性。与之形成鲜明对比的是,带有易于进行β-氢消除的烷基残基的格氏试剂能将FeXn(n = 2, 3)还原为形式组成为[Fe(MgX)2]n的簇合物。这些金属间化合物的行为可以通过结构明确的锂铁酸盐配合物来模拟,例如[Fe(C2H4)4][Li(tmeda)]2(8)、[Fe(cod)2][Li(dme)]2(9)、[CpFe(C2H4)2][Li(tmeda)](7)、[CpFe(cod)][Li(dme)](11)或[Cp*Fe(C2H4)2][Li(tmeda)](14)。这种以短的金属间Fe - Li键为特征的富电子配合物已被证明能与芳基氯和烯丙基卤化物反应;所得有机铁化合物的结构和反应模式为低价铁催化的芳基、烷基、烯丙基、苄基和炔丙基卤化物与有机镁试剂的交叉偶联反应的基本步骤提供了初步见解。然而,所获得的数据表明,这种C - C键的形成原则上可以沿着形式氧化态为Fe(+1)/Fe(+3)、Fe(0)/Fe(+2)和Fe(-2)/Fe(0)的金属中心之间穿梭的不同催化循环发生。由于这些不同的体系可能相互关联,即使最低可及形式氧化态的铁配合物能最有效地促进反应,要明确确定溶液中哪个氧化还原循环占主导仍然困难。