Suppr超能文献

BSMART:一个用于分析多通道神经时间序列的Matlab/C工具箱。

BSMART: a Matlab/C toolbox for analysis of multichannel neural time series.

作者信息

Cui Jie, Xu Lei, Bressler Steven L, Ding Mingzhou, Liang Hualou

机构信息

School of Health Information Science, University of Texas Health Science Center at Houston, 7000 Fannin Street, Suite 600, Houston, TX 77030, USA.

出版信息

Neural Netw. 2008 Oct;21(8):1094-104. doi: 10.1016/j.neunet.2008.05.007. Epub 2008 Jun 5.

Abstract

We have developed a Matlab/C toolbox, Brain-SMART (System for Multivariate AutoRegressive Time series, or BSMART), for spectral analysis of continuous neural time series data recorded simultaneously from multiple sensors. Available functions include time series data importing/exporting, preprocessing (normalization and trend removal), AutoRegressive (AR) modeling (multivariate/bivariate model estimation and validation), spectral quantity estimation (auto power, coherence and Granger causality spectra), network analysis (including coherence and causality networks) and visualization (including data, power, coherence and causality views). The tools for investigating causal network structures in respect of frequency bands are unique functions provided by this toolbox. All functionality has been integrated into a simple and user-friendly graphical user interface (GUI) environment designed for easy accessibility. Although we have tested the toolbox only on Windows and Linux operating systems, BSMART itself is system independent. This toolbox is freely available (http://www.brain-smart.org) under the GNU public license for open source development.

摘要

我们开发了一个Matlab/C工具箱Brain-SMART(多元自回归时间序列系统,即BSMART),用于对从多个传感器同时记录的连续神经时间序列数据进行频谱分析。可用功能包括时间序列数据的导入/导出、预处理(归一化和趋势消除)、自回归(AR)建模(多元/双变量模型估计和验证)、频谱量估计(自功率、相干性和格兰杰因果谱)、网络分析(包括相干性和因果网络)以及可视化(包括数据、功率、相干性和因果视图)。该工具箱提供了用于研究频段因果网络结构的工具,这些是其独特功能。所有功能都已集成到一个简单且用户友好的图形用户界面(GUI)环境中,便于访问。尽管我们仅在Windows和Linux操作系统上测试了该工具箱,但BSMART本身与系统无关。此工具箱在GNU公共许可证下可免费获取(http://www.brain-smart.org),用于开源开发。

相似文献

3
Neuroelectromagnetic forward modeling toolbox.神经电磁正向建模工具箱。
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3991-4. doi: 10.1109/IEMBS.2008.4650084.
10
EasyMEG: An easy-to-use toolbox for MEG analysis.EasyMEG:一款用于脑磁图分析的易用工具箱。
Comput Methods Programs Biomed. 2020 Apr;186:105199. doi: 10.1016/j.cmpb.2019.105199. Epub 2019 Nov 12.

引用本文的文献

本文引用的文献

1
Neuroscience. Neural networks debunk phrenology.神经科学。神经网络揭穿颅相学。
Science. 2007 Jun 15;316(5831):1578-9. doi: 10.1126/science.1144677.
2
Exploring the dynamics of collective synchronizations in large ensembles of brain signals.探索大脑信号大型集合中的集体同步动态。
J Physiol Paris. 2006 Oct;100(4):194-200. doi: 10.1016/j.jphysparis.2007.01.006. Epub 2007 Jan 17.
5
Causal influence: advances in neurosignal analysis.因果影响:神经信号分析的进展
Crit Rev Biomed Eng. 2005;33(4):347-430. doi: 10.1615/critrevbiomedeng.v33.i4.20.
6
Granger causality and information flow in multivariate processes.多元过程中的格兰杰因果关系与信息流。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):050902. doi: 10.1103/PhysRevE.70.050902. Epub 2004 Nov 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验