Department of Bioengineering, Politecnico di Milano, Milan, Italy.
Comput Biol Med. 2012 Oct;42(10):943-56. doi: 10.1016/j.compbiomed.2012.07.003. Epub 2012 Aug 25.
Investigation of causal interactions within brain networks using Granger causality analysis (GCA) is a key challenge in studying neural activity on the basis of functional magnetic resonance imaging (fMRI). The article describes an open-source software toolbox GMAC (Granger multivariate autoregressive connectivity) implementing multivariate spectral GCA. Available features are: fMRI data importing/exporting, network nodes definition, time series preprocessing, multivariate autoregressive modeling, spectral Granger causality indexes estimation, statistical significance assessment using surrogate data, network analysis and visualization of connectivity results. All functions have been integrated into a user-friendly graphical interface developed in the Matlab environment, easily accessible to both technical and clinical users.
使用格兰杰因果分析(GCA)研究脑网络中的因果相互作用是基于功能磁共振成像(fMRI)研究神经活动的关键挑战。本文介绍了一个开源软件工具箱 GMAC(格兰杰多变量自回归连接),实现了多变量谱 GCA。可用功能包括: fMRI 数据导入/导出、网络节点定义、时间序列预处理、多变量自回归建模、谱格兰杰因果指数估计、使用替代数据进行统计显著性评估、网络分析和连接结果可视化。所有功能都已集成到一个用户友好的图形界面中,该界面在 Matlab 环境中开发,技术和临床用户都可以轻松访问。