Suppr超能文献

人类代谢网络拓扑结构对疾病共病的影响。

The implications of human metabolic network topology for disease comorbidity.

作者信息

Lee D-S, Park J, Kay K A, Christakis N A, Oltvai Z N, Barabási A-L

机构信息

Center for Complex Network Research and Department of Physics, Biology, and Computer Science, Northeastern University, Boston, MA 02115, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9880-5. doi: 10.1073/pnas.0802208105. Epub 2008 Jul 3.

Abstract

Most diseases are the consequence of the breakdown of cellular processes, but the relationships among genetic/epigenetic defects, the molecular interaction networks underlying them, and the disease phenotypes remain poorly understood. To gain insights into such relationships, here we constructed a bipartite human disease association network in which nodes are diseases and two diseases are linked if mutated enzymes associated with them catalyze adjacent metabolic reactions. We find that connected disease pairs display higher correlated reaction flux rate, corresponding enzyme-encoding gene coexpression, and higher comorbidity than those that have no metabolic link between them. Furthermore, the more connected a disease is to other diseases, the higher is its prevalence and associated mortality rate. The network topology-based approach also helps to uncover potential mechanisms that contribute to their shared pathophysiology. Thus, the structure and modeled function of the human metabolic network can provide insights into disease comorbidity, with potentially important consequences for disease diagnosis and prevention.

摘要

大多数疾病是细胞过程崩溃的结果,但基因/表观遗传缺陷、其潜在的分子相互作用网络与疾病表型之间的关系仍知之甚少。为了深入了解这些关系,我们构建了一个二分人类疾病关联网络,其中节点为疾病,若与它们相关的突变酶催化相邻的代谢反应,则这两种疾病相连。我们发现,与没有代谢联系的疾病对相比,有联系的疾病对表现出更高的相关反应通量率、相应的酶编码基因共表达以及更高的共病率。此外,一种疾病与其他疾病的联系越紧密,其患病率和相关死亡率就越高。基于网络拓扑的方法也有助于揭示导致它们共同病理生理学的潜在机制。因此,人类代谢网络的结构和模拟功能可以为疾病共病提供见解,对疾病诊断和预防可能产生重要影响。

相似文献

1
The implications of human metabolic network topology for disease comorbidity.人类代谢网络拓扑结构对疾病共病的影响。
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9880-5. doi: 10.1073/pnas.0802208105. Epub 2008 Jul 3.
2
Networking metabolites and diseases.代谢物与疾病的关联网络
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9849-50. doi: 10.1073/pnas.0805644105. Epub 2008 Jul 16.
8
Current strategies for the treatment of inborn errors of metabolism.当前治疗先天性代谢缺陷的策略。
J Genet Genomics. 2018 Feb 20;45(2):61-70. doi: 10.1016/j.jgg.2018.02.001. Epub 2018 Feb 14.

引用本文的文献

1
: Generating Histopathology Cell Topology with a Diffusion Model.利用扩散模型生成组织病理学细胞拓扑结构
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2025 Jun;2025:20979-20989. doi: 10.1109/cvpr52734.2025.01954. Epub 2025 Aug 13.
5
Conformal novelty detection for multiple metabolic networks.多代谢网络的保形新颖性检测。
BMC Bioinformatics. 2024 Nov 16;25(1):358. doi: 10.1186/s12859-024-05971-8.
10
The metabolomic physics of complex diseases.复杂疾病的代谢组学物理学。
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2308496120. doi: 10.1073/pnas.2308496120. Epub 2023 Oct 9.

本文引用的文献

1
Phenome connections.表型关联
Trends Genet. 2008 Mar;24(3):103-6. doi: 10.1016/j.tig.2007.12.005. Epub 2008 Feb 19.
2
Network medicine--from obesity to the "diseasome".网络医学——从肥胖到“疾病组”
N Engl J Med. 2007 Jul 26;357(4):404-7. doi: 10.1056/NEJMe078114. Epub 2007 Jul 25.
7
Probing genetic overlap among complex human phenotypes.探究复杂人类表型之间的遗传重叠。
Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11694-9. doi: 10.1073/pnas.0704820104. Epub 2007 Jul 3.
8
The human disease network.人类疾病网络。
Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90. doi: 10.1073/pnas.0701361104. Epub 2007 May 14.
10
Biological impacts and context of network theory.网络理论的生物学影响及背景
J Exp Biol. 2007 May;210(Pt 9):1548-58. doi: 10.1242/jeb.003731.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验