Suppr超能文献

性别特异性转录组相似性网络阐明了共病关系。

Sex-specific transcriptome similarity networks elucidate comorbidity relationships.

作者信息

Sánchez-Valle Jon, Flores-Rodero María, Costa Felipe Xavier, Carbonell-Caballero Jose, Núñez-Carpintero Iker, Tabarés-Seisdedos Rafael, Rocha Luis Mateus, Cirillo Davide, Valencia Alfonso

机构信息

Computational Biology, Barcelona Supercomputing Center, Barcelona, 08034, Spain.

Department of Medicine, University of Valencia, CIBERSAM, INCLIVA, 46010, Valencia, Spain.

出版信息

bioRxiv. 2025 Jan 24:2025.01.22.634077. doi: 10.1101/2025.01.22.634077.

Abstract

Humans present sex-driven biological differences. Consequently, the prevalence of analyzing specific diseases and comorbidities differs between the sexes, directly impacting patients' management and treatment. Despite its relevance and the growing evidence of said differences across numerous diseases (with 4,370 PubMed results published within the past year), knowledge at the comorbidity level remains limited. In fact, to date, no study has attempted to identify the biological processes altered differently in women and men, promoting differences in comorbidities. To shed light on this problem, we analyze expression data for more than 100 diseases from public repositories, analyzing each sex independently. We calculate similarities between differential expression profiles by disease pairs and find that 13-16% of transcriptomically similar disease pairs are sex-specific. By comparing these results with epidemiological evidence, we recapitulate 53-60% of known comorbidities distinctly described for men and women, finding sex-specific transcriptomic similarities between sex-specific comorbid diseases. The analysis of shared underlying pathways shows that diseases can co-occur in men and women by altering alternative biological processes. Finally, we identify different drugs differentially associated with comorbid diseases depending on patients' sex, highlighting the need to consider this relevant variable in the administration of drugs due to their possible influence on comorbidities.

摘要

人类存在性别驱动的生物学差异。因此,分析特定疾病和合并症的患病率在性别之间存在差异,这直接影响患者的管理和治疗。尽管其具有相关性,且在众多疾病中关于上述差异的证据不断增加(过去一年在PubMed上发表了4370篇相关结果),但在合并症层面的认知仍然有限。事实上,迄今为止,尚无研究试图确定在男性和女性中发生不同改变的生物学过程,这些过程导致了合并症的差异。为了阐明这一问题,我们分析了来自公共数据库的100多种疾病的表达数据,对每种性别分别进行分析。我们通过疾病对计算差异表达谱之间的相似性,发现13%-16%的转录组相似疾病对是性别特异性的。通过将这些结果与流行病学证据进行比较,我们概括了53%-60%已知的男性和女性分别描述的合并症,在性别特异性合并疾病之间发现了性别特异性的转录组相似性。对共同潜在途径的分析表明,疾病可以通过改变不同的生物学过程在男性和女性中同时出现。最后,我们确定了根据患者性别与合并疾病有不同关联的不同药物,强调了在药物管理中考虑这一相关变量的必要性,因为它们可能对合并症产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c33/11785135/62681f20566c/nihpp-2025.01.22.634077v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验