Wong Ruey-Hong, Chang Shu-Yuan, Ho Shu-Wei, Huang Pei-Lin, Liu Yi-Jie, Chen Yu-Ching, Yeh Yu-Hsuan, Lee Hong-Shen
Department of Public Health, College of Health Care and Management, Chung Shan Medical University, No. 110 Chien-Kuo N. Road, Sec. 1, Taichung 40242, Taiwan.
Mutat Res. 2008 Jul 31;654(2):168-75. doi: 10.1016/j.mrgentox.2008.06.005. Epub 2008 Jun 18.
Pesticide exposure is associated with various neoplastic diseases and congenital malformations. Previous studies have indicated that pesticides may be metabolized by cytochrome P450 3A5 or glutathione S-transferases. DNA-repair genes, including X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD), may also be implicated in the process of pesticide-related carcinogenesis. Thus, we investigated whether various metabolic and DNA-repair genotypes increase the risk of DNA damage in pesticide-exposed fruit growers. Using the comet assay, the extent of DNA damage was evaluated in the peripheral blood of 135 pesticide-exposed fruit growers and 106 unexposed controls. The metabolic genotypes CYP3A5 (A(-44)G) and GSTP1 (Ile105Val) and DNA-repair genotypes XRCC1 (Arg399Gln, Arg194Trp, T(-77)C) and XPD (Asp312Asn, Lys751Gln) were identified by polymerase chain reaction. Our multiple regression model for DNA tail moment showed that age, high pesticide exposure, low pesticide exposure, GSTP1 Ile-Ile, and XRCC1 399 Arg-Arg genotype were associated with increased DNA tail moment (DNA damage). Further analysis of interaction between GSTP1 and XRCC1 genes that increase susceptibility revealed a significant difference in DNA tail moment for high pesticide-exposed subjects carrying both GSTP1 Ile-Ile with XRCC1 399 Arg-Arg genotypes (2.49+/-0.09 microm/cell; P=0.004), compared to those carrying GSTP1 Ile-Val/Val-Val with XRCC1 399 Arg-Gln/Gln-Gln genotypes (1.98+/-0.15 microm/cell). These results suggest that individuals with susceptible metabolic GSTP1 and DNA-repair XRCC1 genotypes may be at increased risk of DNA damage due to pesticide exposure.
接触农药与多种肿瘤疾病和先天性畸形有关。先前的研究表明,农药可能通过细胞色素P450 3A5或谷胱甘肽S-转移酶进行代谢。包括X射线修复交叉互补基因1(XRCC1)和着色性干皮病D组(XPD)在内的DNA修复基因,也可能参与与农药相关的致癌过程。因此,我们调查了各种代谢和DNA修复基因型是否会增加接触农药的果农的DNA损伤风险。采用彗星试验,评估了135名接触农药的果农和106名未接触农药的对照者外周血中的DNA损伤程度。通过聚合酶链反应鉴定了代谢基因型CYP3A5(A(-44)G)和GSTP1(Ile105Val)以及DNA修复基因型XRCC1(Arg399Gln、Arg194Trp、T(-77)C)和XPD(Asp312Asn、Lys751Gln)。我们针对DNA尾矩的多元回归模型显示,年龄、高农药暴露、低农药暴露、GSTP1 Ile-Ile以及XRCC1 399 Arg-Arg基因型与DNA尾矩增加(DNA损伤)有关。对增加易感性的GSTP1和XRCC1基因之间的相互作用进行的进一步分析显示,与携带GSTP1 Ile-Val/Val-Val和XRCC1 399 Arg-Gln/Gln-Gln基因型的高农药暴露受试者(1.98±0.15微米/细胞)相比,携带GSTP1 Ile-Ile和XRCC1 399 Arg-Arg基因型的高农药暴露受试者的DNA尾矩存在显著差异(2.49±0.09微米/细胞;P=0.004)。这些结果表明,具有易感性代谢GSTP1和DNA修复XRCC1基因型的个体可能因接触农药而面临更高的DNA损伤风险。