Suppr超能文献

鸡体重遗传结构的剖析揭示了上位性对驯化性状的影响。

Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits.

作者信息

Le Rouzic Arnaud, Alvarez-Castro José M, Carlborg Orjan

机构信息

Linnaeus Centre for Bioinformatics, Uppsala University, 751 24 Uppsala, Sweden.

出版信息

Genetics. 2008 Jul;179(3):1591-9. doi: 10.1534/genetics.108.089300. Epub 2008 Jul 13.

Abstract

In this contribution, we study the genetic mechanisms leading to differences in the observed growth patterns of domesticated White Leghorn chickens and their wild ancestor the red jungle fowl. An epistatic QTL analysis for several body-weight measures from hatch to adulthood confirms earlier findings that polymorphisms at >15 loci contribute to body-weight determination in an F(2) intercross between these populations and that many loci are involved in complex genetic interactions. Here, we use a new genetic model to decompose the genetic effects of this multilocus epistatic genetic network. The results show how the functional modeling of genetic effects provides new insights into how genetic interactions in a large set of loci jointly contribute to phenotypic expression. By exploring the functional effects of QTL alleles, we show that some alleles can display temporal shifts in the expression of genetic effects due to their dependencies on the genetic background. Our results demonstrate that the effects of many genes are dependent on genetic interactions with other loci and how their involvement in the domestication process relies on these interactions.

摘要

在本论文中,我们研究了导致家养白来航鸡与其野生祖先原鸡在生长模式上出现差异的遗传机制。对从孵化到成年的多个体重指标进行上位性QTL分析,证实了早期研究结果:超过15个位点的多态性对这两个群体之间F(2)杂交后代的体重决定有贡献,且许多位点参与复杂的基因互作。在此,我们使用一种新的遗传模型来分解这个多位点上位性遗传网络的遗传效应。结果显示,遗传效应的功能建模如何为大量位点中的基因互作如何共同影响表型表达提供新的见解。通过探索QTL等位基因的功能效应,我们发现一些等位基因由于对遗传背景的依赖性,其遗传效应的表达会出现时间上的变化。我们的结果表明,许多基因的效应依赖于与其他位点的基因互作,以及它们在驯化过程中的参与如何依赖于这些互作。

相似文献

1
Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits.
Genetics. 2008 Jul;179(3):1591-9. doi: 10.1534/genetics.108.089300. Epub 2008 Jul 13.
3
A longitudinal quantitative trait locus mapping of chicken growth traits.
Mol Genet Genomics. 2019 Feb;294(1):243-252. doi: 10.1007/s00438-018-1501-y. Epub 2018 Oct 12.
4
Replication and explorations of high-order epistasis using a large advanced intercross line pedigree.
PLoS Genet. 2011 Jul;7(7):e1002180. doi: 10.1371/journal.pgen.1002180. Epub 2011 Jul 21.
6
Phenotypic evolution from genetic polymorphisms in a radial network architecture.
BMC Biol. 2007 Nov 14;5:50. doi: 10.1186/1741-7007-5-50.
8
Complex genetic architecture of the chicken Growth1 QTL region.
PLoS One. 2024 May 13;19(5):e0295109. doi: 10.1371/journal.pone.0295109. eCollection 2024.
9
Genetic analysis of metabolic traits in an intercross between body weight-selected chicken lines.
Physiol Genomics. 2010 Jun;42(1):20-2. doi: 10.1152/physiolgenomics.00149.2009. Epub 2010 Mar 23.

引用本文的文献

1
Complex genetic architecture of the chicken Growth1 QTL region.
PLoS One. 2024 May 13;19(5):e0295109. doi: 10.1371/journal.pone.0295109. eCollection 2024.
3
A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens.
Genet Sel Evol. 2021 Sep 8;53(1):70. doi: 10.1186/s12711-021-00663-w.
4
Quantitative trait loci for growth-related traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing.
Mol Genet Genomics. 2021 Sep;296(5):1147-1159. doi: 10.1007/s00438-021-01806-w. Epub 2021 Jul 12.
6
The Impact of Non-additive Effects on the Genetic Correlation Between Populations.
G3 (Bethesda). 2020 Feb 6;10(2):783-795. doi: 10.1534/g3.119.400663.
7
Maladaptation in feral and domesticated animals.
Evol Appl. 2019 Mar 18;12(7):1274-1286. doi: 10.1111/eva.12784. eCollection 2019 Aug.
8
Genetical genomics of growth in a chicken model.
BMC Genomics. 2018 Jan 23;19(1):72. doi: 10.1186/s12864-018-4441-3.
9
10
A molecular genome scan to identify DNA segments associated with live weight in Japanese quail.
Mol Biol Rep. 2016 Nov;43(11):1267-1272. doi: 10.1007/s11033-016-4059-y. Epub 2016 Aug 25.

本文引用的文献

3
Estimation of genetic effects and genotype-phenotype maps.
Evol Bioinform Online. 2008 Jun 28;4:225-35. doi: 10.4137/ebo.s756.
4
How to perform meaningful estimates of genetic effects.
PLoS Genet. 2008 May 2;4(5):e1000062. doi: 10.1371/journal.pgen.1000062.
5
Evolutionary potential of hidden genetic variation.
Trends Ecol Evol. 2008 Jan;23(1):33-7. doi: 10.1016/j.tree.2007.09.014.
6
Phenotypic evolution from genetic polymorphisms in a radial network architecture.
BMC Biol. 2007 Nov 14;5:50. doi: 10.1186/1741-7007-5-50.
7
A unified model for functional and statistical epistasis and its application in quantitative trait Loci analysis.
Genetics. 2007 Jun;176(2):1151-67. doi: 10.1534/genetics.106.067348. Epub 2007 Apr 3.
10
Quantitative trait loci analysis of egg and meat production traits in a red junglefowlxWhite Leghorn cross.
Anim Genet. 2006 Dec;37(6):529-34. doi: 10.1111/j.1365-2052.2006.01515.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验