Schaeffer Stephen W, Bhutkar Arjun, McAllister Bryant F, Matsuda Muneo, Matzkin Luciano M, O'Grady Patrick M, Rohde Claudia, Valente Vera L S, Aguadé Montserrat, Anderson Wyatt W, Edwards Kevin, Garcia Ana C L, Goodman Josh, Hartigan James, Kataoka Eiko, Lapoint Richard T, Lozovsky Elena R, Machado Carlos A, Noor Mohamed A F, Papaceit Montserrat, Reed Laura K, Richards Stephen, Rieger Tania T, Russo Susan M, Sato Hajime, Segarra Carmen, Smith Douglas R, Smith Temple F, Strelets Victor, Tobari Yoshiko N, Tomimura Yoshihiko, Wasserman Marvin, Watts Thomas, Wilson Robert, Yoshida Kiyohito, Markow Therese A, Gelbart William M, Kaufman Thomas C
Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Genetics. 2008 Jul;179(3):1601-55. doi: 10.1534/genetics.107.086074. Epub 2008 Jul 13.
The sequencing of the 12 genomes of members of the genus Drosophila was taken as an opportunity to reevaluate the genetic and physical maps for 11 of the species, in part to aid in the mapping of assembled scaffolds. Here, we present an overview of the importance of cytogenetic maps to Drosophila biology and to the concepts of chromosomal evolution. Physical and genetic markers were used to anchor the genome assembly scaffolds to the polytene chromosomal maps for each species. In addition, a computational approach was used to anchor smaller scaffolds on the basis of the analysis of syntenic blocks. We present the chromosomal map data from each of the 11 sequenced non-Drosophila melanogaster species as a series of sections. Each section reviews the history of the polytene chromosome maps for each species, presents the new polytene chromosome maps, and anchors the genomic scaffolds to the cytological maps using genetic and physical markers. The mapping data agree with Muller's idea that the majority of Drosophila genes are syntenic. Despite the conservation of genes within homologous chromosome arms across species, the karyotypes of these species have changed through the fusion of chromosomal arms followed by subsequent rearrangement events.
对果蝇属成员的12个基因组进行测序,为重新评估其中11个物种的遗传图谱和物理图谱提供了契机,部分目的是协助已组装支架的定位。在此,我们概述细胞遗传学图谱对果蝇生物学以及染色体进化概念的重要性。利用物理和遗传标记将基因组组装支架定位到每个物种的多线染色体图谱上。此外,基于对同线基因座的分析,采用一种计算方法来定位较小的支架。我们将11个已测序的非黑腹果蝇物种的染色体图谱数据呈现为一系列章节。每个章节回顾每个物种多线染色体图谱的历史,展示新的多线染色体图谱,并使用遗传和物理标记将基因组支架定位到细胞学图谱上。这些定位数据与穆勒的观点一致,即大多数果蝇基因是同线的。尽管跨物种同源染色体臂内的基因具有保守性,但这些物种的核型通过染色体臂的融合以及随后的重排事件发生了变化。