Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" University of Rome, 00185 Rome, Italy.
Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", 70121 Bari, Italy.
Genetics. 2022 Sep 30;222(2). doi: 10.1093/genetics/iyac119.
In Drosophila chromosomal rearrangements can be maintained and are associated with karyotypic variability among populations from different geographic localities. The abundance of variability in gene arrangements among chromosomal arms is even greater when comparing more distantly related species and the study of these chromosomal changes has provided insights into the evolutionary history of species in the genus. In addition, the sequencing of genomes of several Drosophila species has offered the opportunity to establish the global pattern of genomic evolution, at both genetic and chromosomal level. The combined approaches of comparative analysis of syntenic blocks and direct physical maps on polytene chromosomes have elucidated changes in the orientation of genomic sequences and the difference between heterochromatic and euchromatic regions. Unfortunately, the centromeric heterochromatic regions cannot be studied using the cytological maps of polytene chromosomes because they are underreplicated and therefore reside in the chromocenter. In Drosophila melanogaster, a cytological map of the heterochromatin has been elaborated using mitotic chromosomes from larval neuroblasts. In the current work, we have expanded on that mapping by producing cytological maps of the mitotic heterochromatin in an additional 10 sequenced Drosophila species. These maps highlight 2 apparently different paths, for the evolution of the pericentric heterochromatin between the subgenera Sophophora and Drosophila. One path leads toward a progressive complexity of the pericentric heterochromatin (Sophophora) and the other toward a progressive simplification (Drosophila). These maps are also useful for a better understanding how karyotypes have been altered by chromosome arm reshuffling during evolution.
在果蝇中,染色体重排可以被维持,并与来自不同地理区域的种群的核型变异性相关联。当比较亲缘关系更远的物种时,染色体臂上基因排列的变异性更加丰富,对这些染色体变化的研究为该属物种的进化历史提供了深入的了解。此外,几个果蝇物种的基因组测序提供了机会,可以在遗传和染色体水平上建立基因组进化的全球模式。通过比较分析同线性块和多线染色体上的直接物理图谱的综合方法,阐明了基因组序列取向的变化以及异染色质和常染色质区域之间的差异。不幸的是,由于中心粒异染色质区未被复制,因此位于染色中心,因此无法使用多线染色体的细胞学图谱来研究它们。在黑腹果蝇中,已经使用幼虫神经母细胞的有丝分裂染色体来构建异染色质的细胞学图谱。在当前的工作中,我们通过对另外 10 个测序的果蝇物种的有丝分裂异染色质进行了细胞学图谱绘制,扩展了该图谱的研究。这些图谱突出了两个亚种 Sophophora 和 Drosophila 之间着丝粒异染色质进化的两个明显不同的途径。一个途径导致着丝粒异染色质的复杂性逐渐增加(Sophophora),另一个途径则导致着丝粒异染色质的逐渐简化(Drosophila)。这些图谱对于更好地理解染色体臂重排如何在进化过程中改变核型也很有用。