Suppr超能文献

干细胞系统生物学中的多路建模与分析

Multiway modeling and analysis in stem cell systems biology.

作者信息

Yener Bülent, Acar Evrim, Aguis Pheadra, Bennett Kristin, Vandenberg Scott L, Plopper George E

机构信息

Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.

出版信息

BMC Syst Biol. 2008 Jul 14;2:63. doi: 10.1186/1752-0509-2-63.

Abstract

BACKGROUND

Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.). A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models) can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells.

RESULTS

We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC) models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link x gene ontology category x osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs x osteogenic stimulus x replicates, and found that application of tensile strain to a collagen I substrate accelerated the osteogenic differentiation induced by a static collagen I substrate.

CONCLUSION

Our results suggest gene- and protein-level models whereby stem cells undergo transdifferentiation to osteoblasts, and lay the foundation for mechanistic, hypothesis-driven studies. Our analysis methods are applicable to a wide range of stem cell differentiation models.

摘要

背景

系统生物学是指旨在揭示生物系统涌现特性的多学科方法。由于干细胞具有广泛的治疗潜力,因此是这种分析的一个有吸引力的目标。系统生物学的一个核心主题是使用计算模型从大量还原论的分子数据(例如基因/蛋白质表达、信号转导活性、代谢活性等)中重建复杂系统。许多确定性、概率性和统计学习模型被用于理解复杂的细胞行为,如细胞分化过程中的蛋白质表达和信号网络的活性。然而,这些模型中的许多都是双峰的,即它们只考虑行-列关系。相比之下,多向建模技术(也称为张量模型)可以分析多模态数据,这些数据捕获了有关细胞分化等复杂行为的更多信息。特别是,张量可以成为随时间建模生物网络动态活性的非常强大的工具。在这里,我们回顾了系统生物学在干细胞中的应用,并举例说明了张量分析在模拟人骨髓间充质干细胞胶原诱导的成骨分化中的应用。

结果

我们应用Tucker1、Tucker3和平行因子分析(PARAFAC)模型来识别细胞外基质诱导人骨髓间充质干细胞成骨分化过程中的蛋白质/基因表达模式。在一个案例中,我们将数据组织成一个蛋白质/基因位点链接×基因本体类别×成骨刺激物类型的张量,发现我们的细胞在经历成骨分化时表达了两组不同的、依赖刺激的功能相关基因。在第二个案例中,我们将DNA微阵列数据组织成基因ID×成骨刺激×重复的三向张量,发现对I型胶原基质施加拉伸应变加速了由静态I型胶原基质诱导的成骨分化。

结论

我们的结果提出了基因和蛋白质水平的模型,据此干细胞可转分化为成骨细胞,并为机制性、假设驱动的研究奠定了基础。我们的分析方法适用于广泛的干细胞分化模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c92/2527292/33759890b817/1752-0509-2-63-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验