Institute of Biomaterials and Biomedical Engineering and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
Cytotechnology. 2003 Mar;41(2-3):75-92. doi: 10.1023/A:1024866504538.
Quantitative approaches are essential for the advancement of strategies to manipulate stem cells or their derivatives for therapeutic applications. Predictive models of stem cell systems would provide the means to pose and validate non-intuitive hypotheses and could thus serve as an important tool for discerning underlying regulatory mechanisms governing stem cell fate decisions. In this paper we review the development of computational models that attempt to describe mammalian adult and embryonic stem (ES) cell responses. Early stochastic models that relied exclusively on statistical distributions to describe the in vitro or in vivo output of stem cells are being revised to incorporate the contributions of exogenous and endogenous parameters on specific stem cell fate processes. Recent models utilize cell specific data (for example, cell-surface receptor distributions, transcription factor half-lives, cell-cycle status, etc.) to provide mechanistic descriptions that are consistent with biologically observed phenomena. Ultimately, the goal of these computational models is to, a priori, predict stem cell output given an initial set of conditions. Our efforts to develop a predictive model of ES cell fate are discussed. The quantitative studies presented in this review represent an important step in developing bioengineering approaches to characterize and predict stem cell behavior. Ongoing efforts to incorporate genetic and signaling network data into computational models should accelerate our understanding of fundamental principles governing stem cell fate decisions.
定量方法对于推进操纵干细胞或其衍生物用于治疗应用的策略至关重要。干细胞系统的预测模型将提供提出和验证非直观假设的手段,因此可以作为辨别控制干细胞命运决策的基本调节机制的重要工具。在本文中,我们回顾了试图描述哺乳动物成体和胚胎干细胞(ES)细胞反应的计算模型的发展。早期仅依赖统计分布来描述干细胞体外或体内输出的随机模型正在被修订,以纳入特定干细胞命运过程中外源和内源参数的贡献。最近的模型利用细胞特异性数据(例如,细胞表面受体分布、转录因子半衰期、细胞周期状态等)提供与生物观察到的现象一致的机制描述。最终,这些计算模型的目标是,根据初始条件,先验地预测干细胞的输出。我们开发 ES 细胞命运预测模型的努力将被讨论。本综述中提出的定量研究代表了朝着表征和预测干细胞行为的生物工程方法发展的重要一步。将遗传和信号网络数据纳入计算模型的持续努力应该会加速我们对控制干细胞命运决策的基本原理的理解。