Suppr超能文献

通过重组工程创建猪生物医学模型。

Creating porcine biomedical models through recombineering.

作者信息

Rogatcheva Margarita M, Rund Laurie A, Swanson Kelly S, Marron Brandy M, Beever Jonathan E, Counter Christopher M, Schook Lawrence B

机构信息

Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.

出版信息

Comp Funct Genomics. 2004;5(3):262-7. doi: 10.1002/cfg.404.

Abstract

Recent advances in genomics provide genetic information from humans and other mammals (mouse, rat, dog and primates) traditionally used as models as well as new candidates (pigs and cattle). In addition, linked enabling technologies, such as transgenesis and animal cloning, provide innovative ways to design and perform experiments to dissect complex biological systems. Exploitation of genomic information overcomes the traditional need to choose naturally occurring models. Thus, investigators can utilize emerging genomic knowledge and tools to create relevant animal models. This approach is referred to as reverse genetics. In contrast to 'forward genetics', in which gene(s) responsible for a particular phenotype are identified by positional cloning (phenotype to genotype), the 'reverse genetics' approach determines the function of a gene and predicts the phenotype of a cell, tissue, or organism (genotype to phenotype). The convergence of classical and reverse genetics, along with genomics, provides a working definition of a 'genetic model' organism (3). The recent construction of phenotypic maps defining quantitative trait loci (QTL) in various domesticated species provides insights into how allelic variations contribute to phenotypic diversity. Targeted chromosomal regions are characterized by the construction of bacterial artificial chromosome (BAC) contigs to isolate and characterize genes contributing towards phenotypic variation. Recombineering provides a powerful methodology to harvest genetic information responsible for phenotype. Linking recombineering with gene-targeted homologous recombination, coupled with nuclear transfer (NT) technology can provide 'clones' of genetically modified animals.

摘要

基因组学的最新进展提供了来自人类和其他传统上用作模型的哺乳动物(小鼠、大鼠、狗和灵长类动物)以及新的候选动物(猪和牛)的遗传信息。此外,相关的辅助技术,如转基因和动物克隆,提供了创新的方法来设计和进行实验,以剖析复杂的生物系统。对基因组信息的利用克服了传统上需要选择自然存在的模型的需求。因此,研究人员可以利用新出现的基因组知识和工具来创建相关的动物模型。这种方法被称为反向遗传学。与“正向遗传学”相反,在正向遗传学中,通过定位克隆(从表型到基因型)来确定负责特定表型的基因,而“反向遗传学”方法则确定基因的功能,并预测细胞、组织或生物体的表型(从基因型到表型)。经典遗传学和反向遗传学与基因组学的融合,为“遗传模型”生物提供了一个有效的定义(3)。最近在各种家养物种中构建定义数量性状位点(QTL)的表型图谱,为等位基因变异如何导致表型多样性提供了见解。通过构建细菌人工染色体(BAC)重叠群来分离和表征导致表型变异的基因,从而对目标染色体区域进行表征。重组工程提供了一种强大的方法来获取负责表型的遗传信息。将重组工程与基因靶向同源重组相结合,再加上核移植(NT)技术,可以提供转基因动物的“克隆体”。

相似文献

2
Harvesting the genomic promise: recombineering sequences for phenotypes.
Anim Biotechnol. 2003 Nov;14(2):103-18. doi: 10.1081/ABIO-120026481.
9
10
Genomics and clinical medicine: rationale for creating and effectively evaluating animal models.
Exp Biol Med (Maywood). 2004 Oct;229(9):866-75. doi: 10.1177/153537020422900902.

本文引用的文献

10
Rapid engineering of bacterial artificial chromosomes using oligonucleotides.利用寡核苷酸快速构建细菌人工染色体
Genesis. 2001 Jan;29(1):14-21. doi: 10.1002/1526-968x(200101)29:1<14::aid-gene1001>3.0.co;2-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验