Hartbrich A, Schmitz G, Weuster-Botz D, de Graaf A A, Wandrey C
Institute of Biotechnology, Research Centre Jülich, D-52425 Jülich, Germany.
Biotechnol Bioeng. 1996 Sep 20;51(6):624-35. doi: 10.1002/(SICI)1097-0290(19960920)51:6<624::AID-BIT2>3.0.CO;2-J.
A new bioreactor system has been developed for in vivo NMR spectroscopy of microorganisms under defined physiological conditions. This cyclone reactor with an integrated NMR flow cell is continuously operated in the magnet of a 400-MHz wide-bore NMR spectrometer system. The residence times of medium and cells are decoupled by a circulation-integrated cross-flow microfiltration module to achieve higher cell densities as compared to continuous fermentations without cell retention (increase in cell density up to a factor of 10 in steady state). Volumetric mass transfer coefficients k(L)a of more than 1.0 s(-1) are possible in the membrane cyclone reactor, ensuring adequate oxygen supply [oxygen transfer rate >15,000 mg O(2) .(L h)(-1)] of high cell densities. With the aid of the membrane cyclone reactor we were able to show, using continuous in vivo (31)P NMR spectroscopy of anaerobic glucose fermentation by Zymomonas mobilis, that the NMR signal intensity was directly proportional to the cell concentration in the reactor. The concentration profiles of intracellular inorganic phosphate, NAD(H), NDP, NTP, UDP-sugar, a cyclic pyrophosphate, two sugar phosphate pools, and extracellular inorganic phosphate were recorded after a shift from one steady state to another. The intracellular cyclic pyrophosphate had not been detected before in in vitro measurements of Zymomonas mobilis extracts due to the high instability of this compound. Using continuous in vivo (13)C NMR spectroscopy of aerobic glucose utilization by Corynebacterium glutamicum at a density of 25 g(cell dry weight) . L(-1), the membrane cyclone reactor served to measure the different dynamics of labeling in the carbon atoms of L-lactate, L-glutamate, succinate, and L-lysine with a time resolution of 10 min after impressing a [1-(13)C]-glucose pulse.
已开发出一种新型生物反应器系统,用于在特定生理条件下对微生物进行体内核磁共振光谱分析。这种带有集成核磁共振流通池的旋风式反应器在400兆赫宽口径核磁共振光谱仪系统的磁体中连续运行。通过一个集成循环的错流微滤模块使培养基和细胞的停留时间解耦,与无细胞保留的连续发酵相比,可实现更高的细胞密度(稳态下细胞密度提高到10倍)。在膜式旋风反应器中,体积传质系数k(L)a可能超过1.0 s(-1),确保了对高细胞密度有充足的氧气供应[氧传递速率>15,000毫克O(2)·(L·h)(-1)]。借助膜式旋风反应器,我们通过对运动发酵单胞菌厌氧葡萄糖发酵进行连续体内(31)P核磁共振光谱分析,发现核磁共振信号强度与反应器中的细胞浓度成正比。在从一种稳态转变到另一种稳态后,记录了细胞内无机磷酸盐、NAD(H)、NDP、NTP、UDP-糖、环焦磷酸、两个磷酸糖库以及细胞外无机磷酸盐的浓度分布。由于该化合物高度不稳定,以前在运动发酵单胞菌提取物的体外测量中未检测到细胞内环焦磷酸。在25克(细胞干重)·L(-1)的密度下,通过对谷氨酸棒杆菌有氧利用葡萄糖进行连续体内(13)C核磁共振光谱分析,在施加[1-(13)C]-葡萄糖脉冲后,膜式旋风反应器用于以10分钟的时间分辨率测量L-乳酸、L-谷氨酸、琥珀酸和L-赖氨酸碳原子中标记的不同动态变化。