Suppr超能文献

Inhibition of the histamine-induced Ca2+ influx in primary human endothelial cells (HUVEC) by volatile anaesthetics.

作者信息

Tas P W L, Stössel C, Roewer N

机构信息

University of Würzburg, Center of Operative Medicine, Department of Anesthesiology, Oberdürrbacher Strasse 6, Würzburg, Germany.

出版信息

Eur J Anaesthesiol. 2008 Dec;25(12):976-85. doi: 10.1017/S0265021508004778. Epub 2008 Jul 17.

Abstract

BACKGROUND AND OBJECTIVE

Vasoactive substances such as histamine, acetylcholine or ATP increase the [Ca2+]i of endothelial cells, which leads to the activation of nitric oxide synthase (eNOS). The NO produced by this enzyme relaxes the underlying smooth muscle. Evidence suggests that eNOS activation is dependent on agonist-induced Ca2+ entry. Recently we have shown that in human endothelial cells (HUVEC), this Ca2+ entry is sensitive to isoflurane. The objective here was to study the mechanism by which volatile anaesthetics can depress the histamine-induced Ca2+ entry into HUVEC cells.

METHODS

HUVECs on coverslips were loaded with the Ca2+ indicator Fluo-3 and inserted in a gastight, temperature-controlled perfusion chamber. Excitation was at 488 nm and fluorescence signals were monitored with a confocal laser scanning microscope (MRC1024, Biorad). Direct measurement of the Ca2+ influx was with Mn2+ as surrogate for calcium at 360 nm in cells loaded with Fura-2.

RESULTS

Addition of histamine induces a biphasic [Ca2+]i increase consisting of Ca2+ release from internal stores and a Ca2+ influx from the external medium (plateau phase). The plateau phase was dose-dependently inhibited by enflurane and sevoflurane (13.7 resp. 21.9% inhibition by 1 MAC anaesthetic). Direct measurement of the Ca2+ influx using the Mn2+ quench of the Fura-2 fluorescence gave similar results. The inhibition of the anaesthetics was not reduced by inhibition of the cGMP pathway, inactivation of protein kinase C, depolarization of the cells or the presence of specific Ca2+-dependent K+ channel inhibitors. Interestingly, unsaturated fatty acids inhibit the histamine-induced Ca2+ influx in a similar way as the volatile anaesthetics.

CONCLUSIONS

Volatile anaesthetics dose-dependently inhibit the histamine-induced Ca2+ influx in HUVECs by a mechanism that may involve unspecific perturbation of the lipid bilayer.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验