Suppr超能文献

多层椭球几何结构中脑电图(EEG)和脑磁图(MEG)的阵列响应核

Array response kernels for EEG and MEG in multilayer ellipsoidal geometry.

作者信息

Gutiérrez David, Nehorai Arye

机构信息

Centro de Investigación y Estudios Avanzados (CINVESTAV), Unidad Monterrey, Apodaca, NL 66600, México.

出版信息

IEEE Trans Biomed Eng. 2008 Mar;55(3):1103-11. doi: 10.1109/TBME.2007.906493.

Abstract

We present forward modeling solutions in the form of array response kernels for electroencephalography (EEG) and magnetoencephalography (MEG), assuming that a multilayer ellipsoidal geometry approximates the anatomy of the head and a dipole current models the source. The use of an ellipsoidal geometry is useful in cases for which incorporating the anisotropy of the head is important but a better model cannot be defined. The structure of our forward solutions facilitates the analysis of the inverse problem by factoring the lead field into a product of the current dipole source and a kernel containing the information corresponding to the head geometry and location of the source and sensors. This factorization allows the inverse problem to be approached as an explicit function of just the location parameters, which reduces the complexity of the estimation solution search. Our forward solutions have the potential of facilitating the solution of the inverse problem, as they provide algebraic representations suitable for numerical implementation. The applicability of our models is illustrated with numerical examples on real EEG/MEG data of N20 responses. Our results show that the residual data after modeling the N20 response using a dipole for the source and an ellipsoidal geometry for the head is in average lower than the residual remaining when a spherical geometry is used for the same estimated dipole.

摘要

我们以脑电图(EEG)和脑磁图(MEG)的阵列响应核的形式给出了正向建模解决方案,假设多层椭球体几何形状近似头部解剖结构,且偶极电流对源进行建模。在纳入头部各向异性很重要但无法定义更好模型的情况下,使用椭球体几何形状很有用。我们正向解决方案的结构通过将导联场分解为电流偶极源与一个包含对应于头部几何形状以及源和传感器位置信息的核的乘积,便于对逆问题进行分析。这种分解使得逆问题可以作为仅关于位置参数的显式函数来处理,从而降低了估计解搜索的复杂性。我们的正向解决方案有促进逆问题求解的潜力,因为它们提供了适合数值实现的代数表示。通过对N20响应的真实EEG/MEG数据进行数值示例,说明了我们模型的适用性。我们的结果表明,当使用偶极作为源且使用椭球体几何形状表示头部对N20响应进行建模后,剩余数据平均低于对相同估计偶极使用球体几何形状时剩余的残差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验