Chapman Karena W, Halder Gregory J, Chupas Peter J
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Il, 60439, USA.
J Am Chem Soc. 2008 Aug 13;130(32):10524-6. doi: 10.1021/ja804079z. Epub 2008 Jul 18.
The nanoporous metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2(H2O)3.{guest} exhibits anomalous compression under applied pressure that is associated with the hyper-filling of the pore network. This behavior involves a dramatic transition between a "hard" regime (bulk modulus, Khard approximately 118 GPa), where the pressure-transmitting fluid penetrates the framework cavities, and a "soft" regime (Ksoft approximately 30 GPa), where the guest-framework system compresses concertedly. Not only is the duality in compressibility triggered by the availability of potential guests but the size/penetrability of the guest molecules determines the pressure at which the hard-soft transition occurs. Specifically, the observed compression behavior depends on the size of the pressure-transmitting fluid molecules, the sample particle size (i.e., the extent of the pore network), and the rate at which the pressure is increased. The unprecedented pressure-induced phenomena documented here, illustrates the exotic high-pressure behaviors possible in this versatile class of advanced functional materials with broad implications for their structure-function relationships and accordingly their practical application.
纳米多孔金属有机骨架材料Cu3(1,3,5-苯三甲酸)2(H2O)3.{客体}在施加压力下表现出异常压缩,这与孔网络的过度填充有关。这种行为涉及在“硬”状态(体模量,Khard约为118 GPa)和“软”状态(Ksoft约为30 GPa)之间的剧烈转变,在“硬”状态下,压力传递流体穿透骨架空腔,在“软”状态下,客体-骨架系统协同压缩。可压缩性的双重性不仅由潜在客体的可用性触发,而且客体分子的大小/穿透性决定了硬-软转变发生时的压力。具体而言,观察到的压缩行为取决于压力传递流体分子的大小、样品颗粒大小(即孔网络的范围)以及压力增加的速率。此处记录的前所未有的压力诱导现象,说明了这类多功能先进功能材料中可能出现的奇异高压行为,对其结构-功能关系及其实际应用具有广泛影响。