Suppr超能文献

数据驱动的相对推理规则提取,以限制生物降解途径预测中的组合爆炸。

Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction.

作者信息

Fenner Kathrin, Gao Junfeng, Kramer Stefan, Ellis Lynda, Wackett Larry

机构信息

Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.

出版信息

Bioinformatics. 2008 Sep 15;24(18):2079-85. doi: 10.1093/bioinformatics/btn378. Epub 2008 Jul 19.

Abstract

MOTIVATION

The University of Minnesota Pathway Prediction System (UM-PPS) is a rule-based expert system to predict plausible biodegradation pathways for organic compounds. However, iterative application of these rules to generate biodegradation pathways leads to combinatorial explosion. We use data from known biotransformation pathways to rationally determine biotransformation priorities (relative reasoning rules) to limit this explosion.

RESULTS

A total of 112 relative reasoning rules were identified and implemented. In one prediction step, i.e. as per one generation predicted, the use of relative reasoning decreases the predicted biotransformations by over 25% for 50 compounds used to generate the rules and by about 15% for an external validation set of 47 xenobiotics, including pesticides, biocides and pharmaceuticals. The percentage of correctly predicted, experimentally known products remains at 75% when relative reasoning is used. The set of relative reasoning rules identified, therefore, effectively reduces the number of predicted transformation products without compromising the quality of the predictions.

AVAILABILITY

The UM-PPS server is freely available on the web to all users at the time of submission of this manuscript and will be available following publication at http://umbbd.msi.umn.edu/predict/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

明尼苏达大学途径预测系统(UM-PPS)是一个基于规则的专家系统,用于预测有机化合物可能的生物降解途径。然而,反复应用这些规则来生成生物降解途径会导致组合爆炸。我们利用已知生物转化途径的数据合理确定生物转化优先级(相对推理规则)以限制这种爆炸。

结果

共确定并实施了112条相对推理规则。在一个预测步骤中,即按照预测的一代计算,对于用于生成规则的50种化合物,使用相对推理可使预测的生物转化减少超过25%,对于包括农药、杀生物剂和药物在内的47种异生素的外部验证集,可减少约15%。使用相对推理时,正确预测的已知实验产物的百分比保持在75%。因此,所确定的相对推理规则集有效地减少了预测转化产物的数量,而不影响预测质量。

可用性

在提交本稿件时,UM-PPS服务器可在网上免费供所有用户使用,发表后可在http://umbbd.msi.umn.edu/predict/获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验