Suppr超能文献

病毒衣壳的可平铺性质以及拓扑约束在天然衣壳设计中的作用。

Tilable nature of virus capsids and the role of topological constraints in natural capsid design.

作者信息

Mannige Ranjan V, Brooks Charles L

机构信息

Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, 10550 North Torrey Pines Road, TPC 6, La Jolla, California 92037, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051902. doi: 10.1103/PhysRevE.77.051902. Epub 2008 May 1.

Abstract

Virus capsids are highly specific assemblies that are formed from a large number of often chemically identical capsid subunits. In the present paper we ask to what extent these structures can be viewed as mathematically tilable objects using a single two-dimensional tile. We find that spherical viruses from a large number of families-eight out of the twelve studied-qualitatively possess properties that allow their representation as two-dimensional monohedral tilings of a bound surface, where each tile represents a subunit. This we did by characterizing the extent to which individual spherical capsids display subunit-subunit (1) holes, (2) overlaps, and (3) gross structural variability. All capsids with T numbers greater than 1 from the Protein Data Bank, with homogeneous protein composition, were used in the study. These monohedral tilings, called canonical capsids due to their platonic (mathematical) form, offer a mathematical segue into the structural and dynamical understanding of not one, but a large number of virus capsids. From our data, it appears as though one may only break the long-standing rules of quasiequivalence by the introduction of subunit-subunit structural variability, holes, and gross overlaps into the shell. To explore the utility of canonical capsids in understanding structural aspects of such assemblies, we used graph theory and discrete geometry to enumerate the types of shapes that the tiles (and hence the subunits) must possess. We show that topology restricts the shape of the face to a limited number of five-sided prototiles, one of which is the "bisected trapezoid" that is a platonic representation of the most ubiquitous capsid subunit shape seen in nature (the trapezoidal jelly-roll motif). This motif is found in a majority of seemingly unrelated virus families that share little to no host, size, or amino acid sequence similarity. This suggests that topological constraints may exhibit dominant roles in the natural design of biological assemblies, while having little effect on amino acid sequence similarity.

摘要

病毒衣壳是高度特异性的聚集体,由大量通常化学性质相同的衣壳亚基组成。在本文中,我们探讨了这些结构在何种程度上可以被视为使用单个二维平铺块的数学可平铺物体。我们发现,来自大量病毒科(在所研究的十二个病毒科中有八个)的球形病毒在质量上具有一些特性,使其能够表示为有界表面的二维单形平铺,其中每个平铺块代表一个亚基。我们通过表征单个球形衣壳在以下方面的程度来做到这一点:(1) 亚基 - 亚基之间的孔洞,(2) 重叠,以及 (3) 总体结构变异性。研究使用了蛋白质数据库中所有T数大于1且蛋白质组成均匀的衣壳。这些单形平铺,由于其柏拉图式(数学)形式而被称为规范衣壳,为理解大量病毒衣壳的结构和动力学提供了一个数学切入点。从我们的数据来看,似乎只有通过在衣壳中引入亚基 - 亚基结构变异性、孔洞和大量重叠,才可能打破长期以来的准等效规则。为了探索规范衣壳在理解此类聚集体结构方面的实用性,我们使用图论和离散几何来枚举平铺块(进而亚基)必须具有的形状类型。我们表明,拓扑结构将面的形状限制为有限数量的五边形原平铺块,其中之一是“二等分梯形”,它是自然界中最普遍存在的衣壳亚基形状(梯形果冻卷基序)的柏拉图式表示。这种基序存在于大多数看似不相关的病毒科中,这些病毒科在宿主、大小或氨基酸序列相似性方面几乎没有或没有相似之处。这表明拓扑约束可能在生物聚集体的自然设计中发挥主导作用,而对氨基酸序列相似性影响很小。

相似文献

1
Tilable nature of virus capsids and the role of topological constraints in natural capsid design.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051902. doi: 10.1103/PhysRevE.77.051902. Epub 2008 May 1.
2
Approximation of virus structure by icosahedral tilings.
Acta Crystallogr A Found Adv. 2015 Jul;71(Pt 4):410-22. doi: 10.1107/S2053273315006701. Epub 2015 May 29.
3
Controlling viral capsid assembly with templating.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051904. doi: 10.1103/PhysRevE.77.051904. Epub 2008 May 8.
5
Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8531-6. doi: 10.1073/pnas.0811517106. Epub 2009 May 13.
6
Periodic table of virus capsids: implications for natural selection and design.
PLoS One. 2010 Mar 4;5(3):e9423. doi: 10.1371/journal.pone.0009423.
7
RNA-controlled polymorphism in the in vivo assembly of 180-subunit and 120-subunit virions from a single capsid protein.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13650-5. doi: 10.1073/pnas.96.24.13650.
8
9
A novel method to map and compare protein-protein interactions in spherical viral capsids.
Proteins. 2008 Nov 15;73(3):644-55. doi: 10.1002/prot.22088.
10
Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects.
J Phys Chem B. 2009 Mar 19;113(11):3370-8. doi: 10.1021/jp8089352.

引用本文的文献

1
Molecular jenga: the percolation phase transition (collapse) in virus capsids.
Phys Biol. 2018 Jun 6;15(5):056005. doi: 10.1088/1478-3975/aac194.
2
Viral Capsid Assembly: A Quantified Uncertainty Approach.
J Comput Biol. 2018 Jan;25(1):51-71. doi: 10.1089/cmb.2017.0218.
3
Uncertainty Quantified Computational Analysis of the Energetics of Virus Capsid Assembly.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:1706-1713. doi: 10.1109/BIBM.2016.7822775. Epub 2017 Jan 19.
4
AChiralPentagonalPolyhedralFramework forCharacterizingVirusCapsidStructures.
Trends Microbiol. 2017 Jun;25(6):438-446. doi: 10.1016/j.tim.2016.12.007. Epub 2017 Jan 13.
5
Highly Symmetric and Congruently Tiled Meshes for Shells and Domes.
Procedia Eng. 2015;124:213-225. doi: 10.1016/j.proeng.2015.10.134.
6
Protein-Protein Interfaces in Viral Capsids Are Structurally Unique.
J Mol Biol. 2015 Nov 6;427(22):3613-3624. doi: 10.1016/j.jmb.2015.09.008. Epub 2015 Sep 12.
7
Modeling Viral Capsid Assembly.
Adv Chem Phys. 2014;155:1-68. doi: 10.1002/9781118755815.ch01.
8
Recent Developments in Molecular Simulation Approaches to Study Spherical Virus Capsids.
Mol Simul. 2014 Apr 1;40(10-11):878-888. doi: 10.1080/08927022.2014.907899.
9
Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition.
PLoS Comput Biol. 2013;9(11):e1003331. doi: 10.1371/journal.pcbi.1003331. Epub 2013 Nov 14.
10
Viral capsid proteins are segregated in structural fold space.
PLoS Comput Biol. 2013;9(2):e1002905. doi: 10.1371/journal.pcbi.1002905. Epub 2013 Feb 7.

本文引用的文献

2
A precise packing sequence for self-assembled convex structures.
Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):717-22. doi: 10.1073/pnas.0604239104. Epub 2007 Jan 10.
3
Mathematical virology: a novel approach to the structure and assembly of viruses.
Philos Trans A Math Phys Eng Sci. 2006 Dec 15;364(1849):3357-73. doi: 10.1098/rsta.2006.1900.
4
Master equation approach to the assembly of viral capsids.
J Theor Biol. 2006 Oct 7;242(3):713-21. doi: 10.1016/j.jtbi.2006.04.023. Epub 2006 May 16.
5
Symmetry, equivalence, and molecular self-assembly.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031502. doi: 10.1103/PhysRevE.73.031502. Epub 2006 Mar 7.
6
Dynamic pathways for viral capsid assembly.
Biophys J. 2006 Jul 1;91(1):42-54. doi: 10.1529/biophysj.105.076851. Epub 2006 Mar 24.
7
Molecular dynamics simulations of the complete satellite tobacco mosaic virus.
Structure. 2006 Mar;14(3):437-49. doi: 10.1016/j.str.2005.11.014.
8
VIPERdb: a relational database for structural virology.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D386-9. doi: 10.1093/nar/gkj032.
9
Assembly models for Papovaviridae based on tiling theory.
Phys Biol. 2005 Sep 13;2(3):175-88. doi: 10.1088/1478-3975/2/3/005.
10
Mechanical properties of viral capsids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021917. doi: 10.1103/PhysRevE.72.021917. Epub 2005 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验