Zandi Roya, Reguera David
Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021917. doi: 10.1103/PhysRevE.72.021917. Epub 2005 Aug 31.
Viruses are known to tolerate wide ranges of pH and salt conditions and to withstand internal pressures as high as 100 atmospheres . In this paper we investigate the mechanical properties of viral capsids, calling explicit attention to the inhomogeneity of the shells that is inherent to their discrete and polyhedral nature. We calculate the distribution of stress in these capsids and analyze their response to isotropic internal pressure (arising, for instance, from genome confinement and/or osmotic activity). We compare our results with appropriate generalizations of classical (i.e., continuum) elasticity theory. We also examine competing mechanisms for viral shell failure, e.g., in-plane crack formation vs radial bursting. The biological consequences of the special stabilities and stress distributions of viral capsids are also discussed.
众所周知,病毒能够耐受广泛的pH值和盐浓度条件,并且能够承受高达100个大气压的内部压力。在本文中,我们研究了病毒衣壳的力学性质,特别关注其离散和多面体性质所固有的壳层不均匀性。我们计算了这些衣壳中的应力分布,并分析了它们对各向同性内部压力(例如,由基因组限制和/或渗透活性引起)的响应。我们将我们的结果与经典(即连续介质)弹性理论的适当推广进行了比较。我们还研究了病毒壳层破坏的竞争机制,例如,面内裂纹形成与径向破裂。我们还讨论了病毒衣壳特殊稳定性和应力分布的生物学后果。