Suppr超能文献

病毒衣壳大小特异性、辅助要求和屈曲中的几何因素

Geometric considerations in virus capsid size specificity, auxiliary requirements, and buckling.

作者信息

Mannige Ranjan V, Brooks Charles L

机构信息

Department of Molecular Biology and Center for Theoretical Biological Physics, The Scripps Research Institute, 10550 North Torrey Pines Court, TPC 6, La Jolla, CA 92037, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 May 26;106(21):8531-6. doi: 10.1073/pnas.0811517106. Epub 2009 May 13.

Abstract

Spherical capsids are shells of protein subunits that protect the genomes of many viral strains. Although nature displays a range of spherical capsid sizes (reflected by the number of subunits in the formation), specific strains display stringent requirements for forming capsids of specific sizes, a requirement that appears crucial to infectivity. Despite its importance in pathogenicity, little is known regarding the determinants of capsid size. Still less is known about exactly which capsids can undergo maturation events such as buckling transitions--postcapsid-assembly events that are crucial to some virus strains. We show that the exclusive determinant of capsid size is hexamer shape, as defined by subunit-subunit dihedral angles. This conclusion arises from considering the dihedral angle patterns within hexamers belonging to natural canonical capsids and geometric capsid models (deltahedra). From simple geometric models and an understanding of endo angle propagation discussed here, we then suggest that buckling transitions may be available only to capsids of certain size (specifically, T < 7 capsids are precluded from such transformations) and that T > 7 capsids require the help of auxiliary mechanisms for proper capsid formation. These predictions, arising from simple geometry and modeling, are backed by a body of empirical evidence, further reinforcing the extent to which the evolution of the atomistically complex virus capsid may be principled around simple geometric design/requirements.

摘要

球形衣壳是由蛋白质亚基构成的外壳,可保护许多病毒株的基因组。尽管自然界中存在多种球形衣壳大小(由形成衣壳的亚基数量反映),但特定病毒株对形成特定大小的衣壳有严格要求,这一要求似乎对感染性至关重要。尽管衣壳大小的决定因素在致病性方面很重要,但人们对此知之甚少。对于究竟哪些衣壳能够经历诸如屈曲转变等成熟事件(衣壳组装后对某些病毒株至关重要的事件),了解得更少。我们表明,衣壳大小的唯一决定因素是六聚体形状,由亚基 - 亚基二面角定义。这一结论源于对属于天然标准衣壳和几何衣壳模型(deltahedra)的六聚体内二面角模式的考虑。基于简单的几何模型以及此处讨论的内角传播的理解,我们进而提出屈曲转变可能仅对特定大小的衣壳可用(具体而言,T < 7 的衣壳无法进行此类转变),并且 T > 7 的衣壳需要辅助机制来帮助形成合适的衣壳。这些基于简单几何和建模得出的预测得到了大量经验证据的支持,进一步强化了原子级复杂的病毒衣壳进化可能围绕简单几何设计/要求展开的程度。

相似文献

5
Assembly, stability and dynamics of virus capsids.病毒衣壳的组装、稳定性和动力学。
Arch Biochem Biophys. 2013 Mar;531(1-2):65-79. doi: 10.1016/j.abb.2012.10.015. Epub 2012 Nov 8.
8
Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.调节衣壳组装的壳粒亚基之间的柔性连接体。
J Mol Biol. 2017 Aug 4;429(16):2474-2489. doi: 10.1016/j.jmb.2017.07.002. Epub 2017 Jul 10.
10
An unexpected twist in viral capsid maturation.病毒衣壳成熟过程中的意外转折。
Nature. 2009 Apr 2;458(7238):646-50. doi: 10.1038/nature07686. Epub 2009 Feb 8.

引用本文的文献

2
Elasticity of the HIV-1 core facilitates nuclear entry and infection.HIV-1 核心的弹性有助于核内进入和感染。
PLoS Pathog. 2024 Sep 11;20(9):e1012537. doi: 10.1371/journal.ppat.1012537. eCollection 2024 Sep.
3
4
α-Carboxysome Size Is Controlled by the Disordered Scaffold Protein CsoS2.α-羧基体大小受无序支架蛋白 CsoS2 控制。
Biochemistry. 2024 Jan 16;63(2):219-229. doi: 10.1021/acs.biochem.3c00403. Epub 2023 Dec 12.
7
Modeling Viral Capsid Assembly.病毒衣壳组装建模
Adv Chem Phys. 2014;155:1-68. doi: 10.1002/9781118755815.ch01.

本文引用的文献

4
Determinants of bacteriophage phi29 head morphology.噬菌体phi29头部形态的决定因素。
Structure. 2006 Nov;14(11):1723-7. doi: 10.1016/j.str.2006.09.007.
8
Elasticity theory and shape transitions of viral shells.病毒衣壳的弹性理论与形状转变
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 1):051923. doi: 10.1103/PhysRevE.72.051923. Epub 2005 Nov 21.
9
VIPERdb: a relational database for structural virology.VIPERdb:一个用于结构病毒学的关系型数据库。
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D386-9. doi: 10.1093/nar/gkj032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验