Momeni Mahdi, Müller Wolf-Christian
Faculty of Physics, Tabriz University, Tabriz 51664, Iran.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 2):056401. doi: 10.1103/PhysRevE.77.056401. Epub 2008 May 7.
Probability density functions (PDFs) of scale-dependent energy fluctuations, P[deltaE(l)] , are studied in high-resolution direct numerical simulations of Navier-Stokes and incompressible magnetohydrodynamic (MHD) turbulence. MHD flows with and without a strong mean magnetic field are considered. For all three systems it is found that the PDFs of inertial range energy fluctuations exhibit self-similarity and monoscaling in agreement with recent solar-wind measurements [Hnat, Geophys. Res. Lett. 29, 86 (2002)]. Furthermore, the energy PDFs exhibit similarity over all scales of the turbulent system showing no substantial qualitative change of shape as the scale of the fluctuations varies. This is in contrast to the well-known behavior of PDFs of turbulent velocity fluctuations. In all three cases under consideration the P[deltaE(l)] resemble Lévy-type gamma distributions approximately Delta;{-1} exp(-|deltaE|/Delta)|deltaE|;{-gamma} The observed gamma distributions exhibit a scale-dependent width Delta(l) and a system-dependent gamma . The monoscaling property reflects the inertial-range scaling of the Elsässer-field fluctuations due to lacking Galilei invariance of deltaE . The appearance of Lévy distributions is made plausible by a simple model of energy transfer.
在纳维-斯托克斯方程和不可压缩磁流体动力学(MHD)湍流的高分辨率直接数值模拟中,研究了尺度相关能量涨落的概率密度函数P[δE(l)]。考虑了有和没有强平均磁场的MHD流。对于所有这三个系统,发现惯性范围能量涨落的概率密度函数呈现出自相似性和单标度性,这与最近的太阳风测量结果一致[Hnat,《地球物理研究快报》29,86(2002)]。此外,能量概率密度函数在湍流系统的所有尺度上都呈现出相似性,随着涨落尺度的变化,形状没有实质性的定性变化。这与湍流速度涨落的概率密度函数的众所周知的行为形成对比。在所考虑的所有三种情况下,P[δE(l)]近似类似于 Lévy 型伽马分布Δ⁻¹ exp(-|δE|/Δ)|δE|⁻γ。观察到的伽马分布呈现出与尺度相关的宽度Δ(l)和与系统相关的γ。单标度性质反映了由于δE缺乏伽利略不变性导致的 Elsässer 场涨落的惯性范围标度。通过一个简单的能量传递模型,Lévy 分布的出现变得合理。