Suppr超能文献

测试太阳风湍流在动力学尺度上波动传递的马尔可夫特性。

Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales.

作者信息

Wójcik Dariusz, Macek Wiesław M

机构信息

Institute of Physical Sciences, Faculty of Mathematics and Natural Sciences, <a href="https://ror.org/05sdyjv16">Cardinal Stefan Wyszyński University</a>, Wóycickiego 1/3, 01-938 Warsaw, Poland and <a href="https://ror.org/03zm2br59">Space Research Centre, Polish Academy of Sciences</a>, Bartycka 18A, 00-716 Warsaw, Poland.

出版信息

Phys Rev E. 2024 Aug;110(2-2):025203. doi: 10.1103/PhysRevE.110.025203.

Abstract

We apply statistical analysis to search for processes responsible for turbulence in physical systems. In our previous studies, we have shown that solar wind turbulence in the inertial range of large magnetohydrodynamic scales exhibits Markov properties. We have recently extended this approach on much smaller kinetic scales. Here we are testing for the Markovian character of stochastic processes in a kinetic regime based on magnetic field and velocity fluctuations in the solar wind, measured onboard the Magnetospheric Multiscale (MMS) mission: behind the bow shock, inside the magnetosheath, and near the magnetopause. We have verified that the Chapman-Kolmogorov necessary conditions for Markov processes is satisfied for local transfer of energy between the magnetic and velocity fields also on kinetic scales. We have confirmed that for magnetic fluctuations, the first Kramers-Moyal coefficient is linear, while the second term is quadratic, corresponding to drift and diffusion processes in the resulting Fokker-Planck equation. It means that magnetic self-similar turbulence is described by generalized Ornstein-Uhlenbeck processes. We show that for the magnetic case, the Fokker-Planck equation leads to the probability density functions of the kappa distributions, which exhibit global universal scale invariance with a linear scaling and lack of intermittency. On the contrary, for velocity fluctuations, higher order Kramers-Moyal coefficients should be taken into account and hence scale invariance is not observed. However, the nonextensity parameter in Tsallis entropy provides a robust measure of the departure of the system from equilibrium. The obtained results are important for a better understanding of the physical mechanism governing turbulent systems in space and laboratory.

摘要

我们应用统计分析来寻找物理系统中产生湍流的过程。在我们之前的研究中,我们已经表明,在大磁流体动力学尺度的惯性范围内,太阳风湍流具有马尔可夫性质。我们最近将这种方法扩展到了小得多的动力学尺度上。在这里,我们基于磁层多尺度(MMS)任务在太阳风中测量的磁场和速度涨落,测试动力学区域中随机过程的马尔可夫特征:在弓形激波之后、磁鞘内部以及磁层顶附近。我们已经验证,在动力学尺度上,磁场和速度场之间能量的局部转移也满足马尔可夫过程的查普曼 - 柯尔莫哥洛夫必要条件。我们已经证实,对于磁涨落,第一个克莱默斯 - 莫亚尔系数是线性的,而第二项是二次的,这对应于所得福克 - 普朗克方程中的漂移和扩散过程。这意味着磁自相似湍流由广义奥恩斯坦 - 乌伦贝克过程描述。我们表明,对于磁学情况,福克 - 普朗克方程导致了κ分布的概率密度函数,其表现出具有线性标度的全局普适标度不变性且不存在间歇性。相反,对于速度涨落,应考虑高阶克莱默斯 - 莫亚尔系数,因此未观察到标度不变性。然而,Tsallis熵中的非广延参数提供了系统偏离平衡的稳健度量。所得结果对于更好地理解空间和实验室中湍流系统的物理机制很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验