Denisov S I, Horsthemke Werner, Hänggi Peter
Institut für Physik, Universität Augsburg, Universitätsstrasse 1, Augsburg, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061112. doi: 10.1103/PhysRevE.77.061112. Epub 2008 Jun 10.
We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary additive white noise. We apply our result to study the distribution of symmetric and asymmetric Lévy flights in an infinitely deep potential well. The fractional Fokker-Planck equation for Lévy flights is derived and solved analytically in the steady state. It is shown that Lévy flights are distributed according to the beta distribution, whose probability density becomes singular at the boundaries of the well. The origin of the preferred concentration of flying objects near the boundaries in nonequilibrium systems is clarified.
我们推导了与由任意加性白噪声驱动的朗之万方程相关的广义福克 - 普朗克方程。我们将我们的结果应用于研究无限深势阱中对称和不对称 Lévy 飞行的分布。推导了 Lévy 飞行的分数阶福克 - 普朗克方程,并在稳态下进行了解析求解。结果表明,Lévy 飞行根据贝塔分布进行分布,其概率密度在势阱边界处变得奇异。阐明了非平衡系统中飞行物体在边界附近优先聚集的起源。