Bernevig B Andrei, Haldane F D M
Princeton Center for Theoretical Physics, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2008 Jun 20;100(24):246802. doi: 10.1103/PhysRevLett.100.246802. Epub 2008 Jun 19.
We describe an occupation-number-like picture of fractional quantum Hall states in terms of polynomial wave functions characterized by a dominant occupation-number configuration. The bosonic variants of single-component Abelian and non-Abelian fractional quantum Hall states are modeled by Jack symmetric polynomials (Jacks), characterized by dominant occupation-number configurations satisfying a generalized Pauli principle. In a series of well-known quantum Hall states, including the Laughlin, Read-Moore, and Read-Rezayi, the Jack polynomials naturally implement a "squeezing rule" that constrains allowed configurations to be restricted to those obtained by squeezing the dominant configuration. The Jacks presented in this Letter describe new trial uniform states, but it is yet to be determined to which actual experimental fractional quantum Hall effect states they apply.
我们根据以占主导地位的占据数构型为特征的多项式波函数,描述了分数量子霍尔态的一种类似占据数的图景。单组分阿贝尔和非阿贝尔分数量子霍尔态的玻色子变体由杰克对称多项式(Jacks)建模,其特征是占主导地位的占据数构型满足广义泡利原理。在一系列著名的量子霍尔态中,包括劳克林态、里德 - 摩尔态和里德 - 雷扎伊态,杰克多项式自然地实现了一种“压缩规则”,该规则将允许的构型限制为通过压缩主导构型获得的那些构型。本信函中提出的杰克多项式描述了新的尝试性均匀态,但它们适用于哪些实际的实验分数量子霍尔效应态还有待确定。