Regnault N, Goerbig M O, Jolicoeur Th
Laboratoire Pierre Aigrain, Département de Physique, ENS, CNRS, 24 Rue Lhomond, F-75005 Paris, France.
Phys Rev Lett. 2008 Aug 8;101(6):066803. doi: 10.1103/PhysRevLett.101.066803. Epub 2008 Aug 6.
We propose a scheme to construct the most prominent Abelian and non-Abelian fractional quantum Hall states from K-component Halperin wave functions. In order to account for a one-component quantum Hall system, these SU(K) colors are distributed over all particles by an appropriate symmetrization. Numerical calculations corroborate the picture that K-component Halperin wave functions may be a common basis for both Abelian and non-Abelian trial wave functions in the study of one-component quantum Hall systems.
我们提出了一种从K分量哈尔珀林波函数构建最显著的阿贝尔和非阿贝尔分数量子霍尔态的方案。为了描述单分量量子霍尔系统,这些SU(K)色通过适当的对称化分布在所有粒子上。数值计算证实了这样一种图景:在单分量量子霍尔系统的研究中,K分量哈尔珀林波函数可能是阿贝尔和非阿贝尔试探波函数的共同基础。