Bernevig B Andrei, Haldane F D M
Princeton Center for Theoretical Physics, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2009 Feb 13;102(6):066802. doi: 10.1103/PhysRevLett.102.066802. Epub 2009 Feb 10.
We present model wave functions for quasielectron (as opposed to quasihole) excitations of the unitary Z_{k} parafermion sequence (Laughlin, Moore-Read, or Read-Rezayi) of fractional quantum Hall states. We uniquely define these states through two generalized clustering conditions: they vanish when either a cluster of k+2 electrons is put together or when two clusters of k+1 electrons are formed at different positions. For Abelian fractional quantum Hall states (k=1), our construction reproduces the Jain quasielectron wave function and elucidates the difference between the Jain and Laughlin quasielectrons.
我们给出了分数量子霍尔态的酉(Z_{k}) 准费米子序列(劳克林态、摩尔 - 里德态或里德 - 雷扎伊态)中准电子(与准空穴相对)激发的模型波函数。我们通过两个广义聚类条件唯一地定义这些态:当(k + 2) 个电子聚集在一起或者当在不同位置形成两个(k + 1) 个电子的簇时,它们消失。对于阿贝尔分数量子霍尔态((k = 1)),我们的构造重现了贾因准电子波函数,并阐明了贾因准电子和劳克林准电子之间的差异。