Biomedical Engineering Laboratory, Tlemcen University, Tlemcen, Algeria.
J Med Syst. 2012 Apr;36(2):903-14. doi: 10.1007/s10916-010-9554-4. Epub 2010 Jul 14.
This paper presents a fuzzy rule based classifier and its application to discriminate premature ventricular contraction (PVC) beats from normals. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied to discover the fuzzy rules in order to determine the correct class of a given input beat. The main goal of our approach is to create an interpretable classifier that also provides an acceptable accuracy. The performance of the classifier is tested on MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) arrhythmia database. On the test set, we achieved an overall sensitivity and specificity of 97.92% and of 94.52% respectively. Experimental results show that the proposed approach is simple and effective in improving the interpretability of the fuzzy classifier while preserving the model performances at a satisfactory level.
本文提出了一种基于模糊规则的分类器及其在区分室性早搏 (PVC) 与正常心搏中的应用。应用自适应神经模糊推理系统 (ANFIS) 来发现模糊规则,以确定给定输入心搏的正确类别。我们方法的主要目标是创建一个可解释的分类器,同时提供可接受的准确性。该分类器的性能在麻省理工学院-贝斯以色列医院 (MIT-BIH) 心律失常数据库上进行了测试。在测试集中,我们分别达到了 97.92%和 94.52%的整体敏感性和特异性。实验结果表明,该方法在保持模型性能在令人满意水平的同时,简单有效地提高了模糊分类器的可解释性。