Suppr超能文献

通过扫描隧道显微镜光刻技术定制石墨烯纳米带的原子结构。

Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography.

作者信息

Tapasztó Levente, Dobrik Gergely, Lambin Philippe, Biró László P

出版信息

Nat Nanotechnol. 2008 Jul;3(7):397-401. doi: 10.1038/nnano.2008.149. Epub 2008 Jun 8.

Abstract

The practical realization of nanoscale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes, only basic demonstration devices have been realized that require time-consuming processes. This is mainly due to a lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons and bent junctions with nanometre-precision, well-defined widths and predetermined crystallographic orientations, allowing us to fully engineer their electronic structure using scanning tunnelling microscope lithography. The atomic structure and electronic properties of the ribbons have been investigated by scanning tunnelling microscopy and tunnelling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, enabling room-temperature operation of graphene nanoribbon-based devices, is reported. This method avoids the difficulties of assembling nanoscale components and may prove useful in the realization of complete integrated circuits, operating as room-temperature ballistic electronic devices.

摘要

纳米级电子学的实际实现面临两大挑战

构建模块的精确工程设计以及将它们组装成功能电路。尽管碳纳米管具有优异的电子特性,但仅实现了需要耗时工艺的基本演示器件。这主要是由于缺乏用于纳米管的选择性生长和可靠组装工艺。然而,石墨烯提供了一种有吸引力的替代方案。在此,我们报告了具有纳米级精度、明确宽度和预定晶体取向的石墨烯纳米带和弯曲结的图案化,这使我们能够使用扫描隧道显微镜光刻技术全面设计其电子结构。通过扫描隧道显微镜和隧道光谱测量研究了纳米带的原子结构和电子特性。据报道,能打开高达0.5电子伏特的限制能隙,使基于石墨烯纳米带的器件能够在室温下工作。这种方法避免了组装纳米级组件的困难,并且可能在实现作为室温弹道电子器件运行的完整集成电路方面证明是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验