Li Kang, Miller Eric D, Chen Mei, Kanade Takeo, Weiss Lee E, Campbell Phil G
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
Med Image Anal. 2008 Oct;12(5):546-66. doi: 10.1016/j.media.2008.06.001. Epub 2008 Jun 18.
Automated visual-tracking of cell populations in vitro using time-lapse phase contrast microscopy enables quantitative, systematic, and high-throughput measurements of cell behaviors. These measurements include the spatiotemporal quantification of cell migration, mitosis, apoptosis, and the reconstruction of cell lineages. The combination of low signal-to-noise ratio of phase contrast microscopy images, high and varying densities of the cell cultures, topological complexities of cell shapes, and wide range of cell behaviors poses many challenges to existing tracking techniques. This paper presents a fully automated multi-target tracking system that can efficiently cope with these challenges while simultaneously tracking and analyzing thousands of cells observed using time-lapse phase contrast microscopy. The system combines bottom-up and top-down image analysis by integrating multiple collaborative modules, which exploit a fast geometric active contour tracker in conjunction with adaptive interacting multiple models (IMM) motion filtering and spatiotemporal trajectory optimization. The system, which was tested using a variety of cell populations, achieved tracking accuracy in the range of 86.9-92.5%.
使用延时相差显微镜对体外细胞群体进行自动视觉跟踪,能够对细胞行为进行定量、系统和高通量测量。这些测量包括细胞迁移、有丝分裂、凋亡的时空量化以及细胞谱系的重建。相差显微镜图像的低信噪比、细胞培养物的高密度且密度变化、细胞形状的拓扑复杂性以及广泛的细胞行为,给现有的跟踪技术带来了诸多挑战。本文提出了一种全自动多目标跟踪系统,该系统在使用延时相差显微镜观察并同时跟踪和分析数千个细胞时,能够有效应对这些挑战。该系统通过集成多个协作模块,将自下而上和自上而下的图像分析相结合,这些模块利用快速几何活动轮廓跟踪器,结合自适应交互多模型(IMM)运动滤波和时空轨迹优化。该系统使用多种细胞群体进行了测试,跟踪准确率在86.9 - 92.5%范围内。