Suppr超能文献

使用耦合水平集和图顶点着色的细胞分割

Cell segmentation using coupled level sets and graph-vertex coloring.

作者信息

Nath Sumit K, Palaniappan Kannappan, Bunyak Filiz

机构信息

MCVL, Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 1):101-8. doi: 10.1007/11866565_13.

Abstract

Current level-set based approaches for segmenting a large number of objects are computationally expensive since they require a unique level set per object (the N-level set paradigm), or [log2N] level sets when using a multiphase interface tracking formulation. Incorporating energy-based coupling constraints to control the topological interactions between level sets further increases the computational cost to O(N2). We propose a new approach, with dramatic computational savings, that requires only four, or fewer, level sets for an arbitrary number of similar objects (like cells) using the Delaunay graph to capture spatial relationships. Even more significantly, the coupling constraints (energy-based and topological) are incorporated using just constant O(1) complexity. The explicit topological coupling constraint, based on predicting contour collisions between adjacent level sets, is developed to further prevent false merging or absorption of neighboring cells, and also reduce fragmentation during level set evolution. The proposed four-color level set algorithm is used to efficiently and accurately segment hundreds of individual epithelial cells within a moving monolayer sheet from time-lapse images of in vitro wound healing without any false merging of cells.

摘要

当前基于水平集的大量对象分割方法计算成本高昂,因为它们需要为每个对象设置一个独特的水平集(N 水平集范式),或者在使用多相界面跟踪公式时需要[log2N]个水平集。纳入基于能量的耦合约束以控制水平集之间的拓扑相互作用会进一步将计算成本增加到 O(N2)。我们提出了一种新方法,可大幅节省计算量,对于任意数量的相似对象(如细胞),使用德劳内图来捕获空间关系时,仅需四个或更少的水平集。更重要的是,耦合约束(基于能量和拓扑的)仅使用常数 O(1) 的复杂度来纳入。基于预测相邻水平集之间的轮廓碰撞开发了显式拓扑耦合约束,以进一步防止相邻细胞的错误合并或吸收,并减少水平集演化过程中的碎片化。所提出的四色水平集算法用于从体外伤口愈合的延时图像中高效准确地分割移动单层片中的数百个单个上皮细胞,且细胞不会出现任何错误合并。

相似文献

1
Cell segmentation using coupled level sets and graph-vertex coloring.使用耦合水平集和图顶点着色的细胞分割
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):101-8. doi: 10.1007/11866565_13.
2
A perceptually inspired variational framework for color enhancement.一种受感知启发的用于色彩增强的变分框架。
IEEE Trans Pattern Anal Mach Intell. 2009 Mar;31(3):458-74. doi: 10.1109/TPAMI.2008.86.
4
Adaptive object tracking based on an effective appearance filter.基于有效外观滤波器的自适应目标跟踪
IEEE Trans Pattern Anal Mach Intell. 2007 Sep;29(9):1661-7. doi: 10.1109/TPAMI.2007.1112.
6
Distinct multicolored region descriptors for object recognition.用于目标识别的独特多色区域描述符。
IEEE Trans Pattern Anal Mach Intell. 2007 Jul;29(7):1291-6. doi: 10.1109/TPAMI.2007.070701.
8
Transferring color between three-dimensional objects.在三维物体之间转移颜色。
Appl Opt. 2005 Apr 1;44(10):1969-76. doi: 10.1364/ao.44.001969.
9
Multi-object geodesic active contours (MOGAC).多目标测地线活动轮廓(MOGAC)。
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):404-12. doi: 10.1007/978-3-642-33418-4_50.

引用本文的文献

2
Directional Connectivity-based Segmentation of Medical Images.基于方向连通性的医学图像分割
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:11525-11535. doi: 10.1109/cvpr52729.2023.01109. Epub 2023 Aug 22.

本文引用的文献

2
Active contours without edges.无边缘活动轮廓。
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
5
Coupled parametric active contours.耦合参数活动轮廓
IEEE Trans Pattern Anal Mach Intell. 2005 Nov;27(11):1838-42. doi: 10.1109/TPAMI.2005.214.
8
Level set analysis for leukocyte detection and tracking.用于白细胞检测与追踪的水平集分析
IEEE Trans Image Process. 2004 Apr;13(4):562-72. doi: 10.1109/tip.2003.819858.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验