Suppr超能文献

固定电荷修饰对电子捕获解离的影响。

The effect of fixed charge modifications on electron capture dissociation.

作者信息

Li Xiaojuan, Cournoyer Jason J, Lin Cheng, O'Connor Peter B

机构信息

Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

J Am Soc Mass Spectrom. 2008 Oct;19(10):1514-26. doi: 10.1016/j.jasms.2008.06.014. Epub 2008 Jun 28.

Abstract

Electron capture dissociation (ECD) studies of two modified amyloid beta peptides (20-29 and 25-35) were performed to investigate the role of H* radicals in the ECD of peptide ions and the free-radical cascade (FRC) mechanism. 2,4,6-Trimethylpyridinium (TMP) was used as the fixed charge tag, which is postulated to both trap the originally formed radical upon electron capture and inhibit the H* generation. It was found that both the number and locations of the fixed charge groups influenced the backbone and side-chain cleavages of these peptides in ECD. In general, the frequency and extent of backbone cleavages decreased and those of side-chain cleavages increased with the addition of fixed charge tags. A singly labeled peptide with the tag group farther away from the protonated site experienced a smaller abundance decrease in backbone cleavage fragments than the one with the tag group closer to the protonated site. Despite the nonprotonated nature of all charge carriers in doubly labeled peptide ions, several c and z* ions were still observed in their ECD spectra. Thus, although H* transfer may be important for the NC(alpha) bond cleavage, there also exist other pathways, which would require a radical migration via H* abstraction through space or via an amide superbase mechanism. Finally, internal fragment ions were observed in the ECD of these linear peptides, indicating that the important role of the FRC in backbone cleavages is not limited to the ECD of cyclic peptides.

摘要

对两种修饰的淀粉样β肽(20 - 29和25 - 35)进行了电子捕获解离(ECD)研究,以探究H自由基在肽离子ECD及自由基级联(FRC)机制中的作用。使用2,4,6 - 三甲基吡啶鎓(TMP)作为固定电荷标签,据推测其既能在电子捕获时捕获最初形成的自由基,又能抑制H的生成。研究发现,固定电荷基团的数量和位置均会影响这些肽在ECD中的主链和侧链裂解。一般来说,随着固定电荷标签的添加,主链裂解的频率和程度降低,侧链裂解的频率和程度增加。与标签基团靠近质子化位点的单标记肽相比,标签基团远离质子化位点的单标记肽在主链裂解片段中的丰度降低幅度较小。尽管双标记肽离子中所有电荷载体均为非质子化性质,但其ECD谱中仍观察到了几个c和z离子。因此,虽然H转移可能对NC(α)键裂解很重要,但也存在其他途径,这可能需要通过空间H*抽取或通过酰胺超强碱机制进行自由基迁移。最后,在这些线性肽的ECD中观察到了内部碎片离子,这表明FRC在主链裂解中的重要作用并不局限于环肽的ECD。

相似文献

1
The effect of fixed charge modifications on electron capture dissociation.
J Am Soc Mass Spectrom. 2008 Oct;19(10):1514-26. doi: 10.1016/j.jasms.2008.06.014. Epub 2008 Jun 28.
2
Electron capture dissociation of hydrogen-deficient peptide radical cations.
J Am Soc Mass Spectrom. 2012 Oct;23(10):1729-40. doi: 10.1007/s13361-012-0433-8. Epub 2012 Aug 2.
3
Electron capture in charge-tagged peptides. Evidence for the role of excited electronic states.
J Am Soc Mass Spectrom. 2007 Dec;18(12):2146-61. doi: 10.1016/j.jasms.2007.09.009. Epub 2007 Sep 18.
4
Toward a general mechanism of electron capture dissociation.
J Am Soc Mass Spectrom. 2005 Feb;16(2):208-24. doi: 10.1016/j.jasms.2004.11.001.
6
Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals.
J Am Soc Mass Spectrom. 2007 Mar;18(3):432-44. doi: 10.1016/j.jasms.2006.10.005. Epub 2006 Nov 16.
7
Electron capture dissociation of peptides metalated with alkaline-earth metal ions.
J Am Soc Mass Spectrom. 2006 Jun;17(6):757-71. doi: 10.1016/j.jasms.2006.01.014. Epub 2006 Apr 17.
9
Gas-phase peptide sequencing by TEMPO-mediated radical generation.
Analyst. 2009 Aug;134(8):1706-12. doi: 10.1039/b904115j. Epub 2009 Jun 12.
10
Charge remote fragmentation in electron capture and electron transfer dissociation.
J Am Soc Mass Spectrom. 2010 Apr;21(4):646-56. doi: 10.1016/j.jasms.2010.01.001. Epub 2010 Jan 18.

引用本文的文献

2
Replacing H by Na or K in phosphopeptide anions and cations prevents electron capture dissociation.
Chem Sci. 2018 Jul 26;9(37):7338-7353. doi: 10.1039/c8sc02470g. eCollection 2018 Oct 7.
4
Fixed-Charge Trimethyl Pyrilium Modification for Enabling Enhanced Top-Down Mass Spectrometry Sequencing of Intact Protein Complexes.
Anal Chem. 2018 Feb 20;90(4):2756-2764. doi: 10.1021/acs.analchem.7b04806. Epub 2018 Feb 2.
6
Photocross-Linked Peptide-Protein Complexes Analysis: A Comparative Study of CID and ETD Fragmentation Modes.
J Am Soc Mass Spectrom. 2015 Jun;26(6):1014-26. doi: 10.1007/s13361-015-1095-0. Epub 2015 Apr 4.
7
Does Electron Capture Dissociation Cleave Protein Disulfide Bonds?
ChemistryOpen. 2012 Dec;1(6):260-8. doi: 10.1002/open.201200038.
8
Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation.
J Am Soc Mass Spectrom. 2013 Nov;24(11):1710-21. doi: 10.1007/s13361-013-0701-2. Epub 2013 Aug 6.
9
Electron transfer dissociation of photolabeled peptides. Backbone cleavages compete with diazirine ring rearrangements.
J Am Soc Mass Spectrom. 2013 Nov;24(11):1641-53. doi: 10.1007/s13361-013-0630-0. Epub 2013 Apr 30.
10
Enhanced electron transfer dissociation of peptides modified at C-terminus with fixed charges.
J Am Soc Mass Spectrom. 2012 Nov;23(11):1991-2000. doi: 10.1007/s13361-012-0458-z. Epub 2012 Aug 16.

本文引用的文献

1
Comparison of charged derivatives for high energy collision-induced dissociation tandem mass spectrometry.
J Am Soc Mass Spectrom. 1995 May;6(5):428-36. doi: 10.1016/1044-0305(95)00018-9.
2
Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD.
J Am Soc Mass Spectrom. 2008 Jun;19(6):780-9. doi: 10.1016/j.jasms.2008.01.001. Epub 2008 Jan 25.
3
Residue-specific radical-directed dissociation of whole proteins in the gas phase.
J Am Chem Soc. 2008 Jan 9;130(1):351-8. doi: 10.1021/ja076535a. Epub 2007 Dec 14.
4
Electron capture in charge-tagged peptides. Evidence for the role of excited electronic states.
J Am Soc Mass Spectrom. 2007 Dec;18(12):2146-61. doi: 10.1016/j.jasms.2007.09.009. Epub 2007 Sep 18.
5
Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations.
J Am Chem Soc. 2007 Oct 10;129(40):12232-43. doi: 10.1021/ja0736764. Epub 2007 Sep 19.
6
Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal product ions.
Anal Chem. 2007 Oct 15;79(20):7596-602. doi: 10.1021/ac071165u. Epub 2007 Sep 18.
8
Side-chain losses in electron capture dissociation to improve peptide identification.
Anal Chem. 2007 Mar 15;79(6):2296-302. doi: 10.1021/ac0619332. Epub 2007 Feb 3.
9
Electron capture in spin-trap capped peptides. An experimental example of ergodic dissociation in peptide cation-radicals.
J Am Soc Mass Spectrom. 2007 Mar;18(3):432-44. doi: 10.1016/j.jasms.2006.10.005. Epub 2006 Nov 16.
10
Top-down ESI-ECD-FT-ICR mass spectrometry localizes noncovalent protein-ligand binding sites.
J Am Chem Soc. 2006 Nov 15;128(45):14432-3. doi: 10.1021/ja063197p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验