Londer Yuri Y, Giuliani Sarah E, Peppler Terese, Collart Frank R
Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
Protein Expr Purif. 2008 Nov;62(1):128-37. doi: 10.1016/j.pep.2008.06.014. Epub 2008 Jul 8.
Integrated studies that address proteins structure and function in the new era of systems biology and genomics often require the application of high-throughput approaches for parallel production of many different purified proteins from the same organism. Cytochromes c-electron transfer proteins carrying one or more hemes covalently bound to the polypeptide chain-are essential in most organisms. However, they are one of the most recalcitrant classes of proteins with respect to heterologous expression because post-translational incorporation of hemes is required for proper folding and stability. We have addressed this challenge by designing two families of vectors (total of 6 vectors) suitable for ligation-independent cloning and developing a pipeline for expression and solubility analysis of cytochromes c. This system has been validated by expression analysis of thirty genes from Shewanella oneidensis coding for cytochromes c or cytochromes c-type domains predicted to have 1-4 hemes. Out of 30 targets, 26 (87%) were obtained in soluble form in one or more vectors. This work establishes a methodology for high-throughput expression of this class of proteins and provides a clone resource for the microbiological and functional genomics research communities.