Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
Biochemistry. 2012 Feb 7;51(5):974-85. doi: 10.1021/bi201135s. Epub 2012 Jan 24.
We report the characterization of the diheme cytochrome c peroxidase (CcP) from Shewanella oneidensis (So) using UV-visible absorbance, electron paramagnetic resonance spectroscopy, and Michaelis-Menten kinetics. While sequence alignment with other bacterial diheme cytochrome c peroxidases suggests that So CcP may be active in the as-isolated state, we find that So CcP requires reductive activation for full activity, similar to the case for the canonical Pseudomonas type of bacterial CcP enzyme. Peroxide turnover initiated with oxidized So CcP shows a distinct lag phase, which we interpret as reductive activation in situ. A simple kinetic model is sufficient to recapitulate the lag-phase behavior of the progress curves and separate the contributions of reductive activation and peroxide turnover. The rates of catalysis and activation differ between MBP fusion and tag-free So CcP and also depend on the identity of the electron donor. Combined with Michaelis-Menten analysis, these data suggest that So CcP can accommodate electron donor binding in several possible orientations and that the presence of the MBP tag affects the availability of certain binding sites. To further investigate the structural basis of reductive activation in So CcP, we introduced mutations into two different regions of the protein that have been suggested to be important for reductive activation in homologous bacterial CcPs. Mutations in a flexible loop region neighboring the low-potential heme significantly increased the activation rate, confirming the importance of flexible loop regions of the protein in converting the inactive, as-isolated enzyme into the activated form.
我们使用紫外可见吸收光谱、电子顺磁共振波谱和 Michaelis-Menten 动力学研究了希瓦氏菌(Shewanella oneidensis)中的二血红素细胞色素 c 过氧化物酶(CcP)的特性。虽然与其他细菌中二血红素细胞色素 c 过氧化物酶的序列比对表明 So CcP 可能在原始状态下具有活性,但我们发现 So CcP 需要还原激活才能充分发挥活性,这与典型的假单胞菌型细菌 CcP 酶的情况相似。用氧化的 So CcP 引发的过氧化物转化显示出明显的滞后期,我们将其解释为原位还原激活。一个简单的动力学模型足以重现进展曲线的滞后期行为,并分离还原激活和过氧化物转化的贡献。MBP 融合和无标签 So CcP 的催化和激活速率不同,并且取决于电子供体的身份。结合 Michaelis-Menten 分析,这些数据表明 So CcP 可以容纳电子供体结合的几个可能的取向,并且 MBP 标签的存在会影响某些结合位点的可用性。为了进一步研究 So CcP 中还原激活的结构基础,我们在该蛋白的两个不同区域引入了突变,这些区域被认为对同源细菌 CcPs 的还原激活很重要。邻近低电势血红素的柔性环区域的突变显著增加了激活速率,证实了蛋白质的柔性环区域在将非活性的原始酶转化为激活形式方面的重要性。