Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.
Mol Pharmacol. 2012 Dec;82(6):1194-204. doi: 10.1124/mol.112.080184. Epub 2012 Sep 12.
Iron is a biologically essential metal, but excess iron can cause damage to the cardiovascular and nervous systems. We examined the effects of extracellular Fe²⁺ on permeation and gating of Ca(V)3.1 channels stably transfected in HEK293 cells, by using whole-cell recording. Precautions were taken to maintain iron in the Fe²⁺ state (e.g., use of extracellular ascorbate). With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, extracellular Fe²⁺ rapidly blocked currents with 2 mM extracellular Ca²⁺ in a voltage-dependent manner, as described by a Woodhull model with K(D) = 2.5 mM at 0 mV and apparent electrical distance δ = 0.17. Extracellular Fe²⁺ also shifted activation to more-depolarized voltages (by ∼10 mV with 1.8 mM extracellular Fe²⁺) somewhat more strongly than did extracellular Ca²⁺ or Mg²⁺, which is consistent with a Gouy-Chapman-Stern model with surface charge density σ = 1 e(-)/98 Ų and K(Fe) = 4.5 M⁻¹ for extracellular Fe²⁺. In the absence of extracellular Ca²⁺ (and with extracellular Na⁺ replaced by TEA), Fe²⁺ carried detectable, whole-cell, inward currents at millimolar concentrations (73 ± 7 pA at -60 mV with 10 mM extracellular Fe²⁺). With a two-site/three-barrier Eyring model for permeation of Ca(V)3.1 channels, we estimated a transport rate for Fe²⁺ of ∼20 ions/s for each open channel at -60 mV and pH 7.2, with 1 μM extracellular Fe²⁺ (with 2 mM extracellular Ca²⁺). Because Ca(V)3.1 channels exhibit a significant "window current" at that voltage (open probability, ∼1%), Ca(V)3.1 channels represent a likely pathway for Fe²⁺ entry into cells with clinically relevant concentrations of extracellular Fe²⁺.
铁是一种生物必需的金属,但过量的铁会对心血管和神经系统造成损害。我们通过全细胞膜片钳记录技术,研究了细胞外 Fe²⁺对稳定转染的 HEK293 细胞中 Ca(V)3.1 通道渗透和门控的影响。我们采取了措施来维持铁的 Fe²⁺状态(例如,使用细胞外抗坏血酸)。通过使用瞬时 I-V 电流(在强去极化后测量)来分离对渗透的影响,结果发现,在 2 mM 细胞外 Ca²⁺的情况下,细胞外 Fe²⁺以电压依赖性方式快速阻断电流,这可以用 Woodhull 模型来描述,在 0 mV 时 K(D) = 2.5 mM,表观电距离 δ = 0.17。细胞外 Fe²⁺也使激活向更去极化的电压移动(在 1.8 mM 细胞外 Fe²⁺的情况下移动约 10 mV),比细胞外 Ca²⁺或 Mg²⁺更为强烈,这与表面电荷密度 σ = 1 e(-)/98 Ų和 K(Fe) = 4.5 M⁻¹的 Gouy-Chapman-Stern 模型一致。在没有细胞外 Ca²⁺的情况下(并将细胞外 Na⁺用 TEA 取代),在毫摩尔浓度下,Fe²⁺可以检测到可透过整个细胞的内向电流(在 10 mM 细胞外 Fe²⁺时,-60 mV 下为 73 ± 7 pA)。对于 Ca(V)3.1 通道的渗透,我们使用二位点/三势垒 Eyring 模型进行了计算,结果表明,在 -60 mV 和 pH 7.2 下,每个开放通道的 Fe²⁺转运速率约为 20 个离子/s,在 1 μM 细胞外 Fe²⁺(在 2 mM 细胞外 Ca²⁺存在的情况下)。由于 Ca(V)3.1 通道在该电压下表现出显著的“窗口电流”(开放概率约为 1%),因此 Ca(V)3.1 通道可能是细胞外 Fe²⁺浓度达到临床相关水平时铁进入细胞的途径。