Suppr超能文献

Fe²⁺阻断和 CaV3.1(α1G)T 型钙通道的通透性:非转铁蛋白介导的 Fe²⁺内流的候选机制。

Fe²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for non-transferrin-mediated Fe²⁺ influx.

机构信息

Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Mol Pharmacol. 2012 Dec;82(6):1194-204. doi: 10.1124/mol.112.080184. Epub 2012 Sep 12.

Abstract

Iron is a biologically essential metal, but excess iron can cause damage to the cardiovascular and nervous systems. We examined the effects of extracellular Fe²⁺ on permeation and gating of Ca(V)3.1 channels stably transfected in HEK293 cells, by using whole-cell recording. Precautions were taken to maintain iron in the Fe²⁺ state (e.g., use of extracellular ascorbate). With the use of instantaneous I-V currents (measured after strong depolarization) to isolate the effects on permeation, extracellular Fe²⁺ rapidly blocked currents with 2 mM extracellular Ca²⁺ in a voltage-dependent manner, as described by a Woodhull model with K(D) = 2.5 mM at 0 mV and apparent electrical distance δ = 0.17. Extracellular Fe²⁺ also shifted activation to more-depolarized voltages (by ∼10 mV with 1.8 mM extracellular Fe²⁺) somewhat more strongly than did extracellular Ca²⁺ or Mg²⁺, which is consistent with a Gouy-Chapman-Stern model with surface charge density σ = 1 e(-)/98 Ų and K(Fe) = 4.5 M⁻¹ for extracellular Fe²⁺. In the absence of extracellular Ca²⁺ (and with extracellular Na⁺ replaced by TEA), Fe²⁺ carried detectable, whole-cell, inward currents at millimolar concentrations (73 ± 7 pA at -60 mV with 10 mM extracellular Fe²⁺). With a two-site/three-barrier Eyring model for permeation of Ca(V)3.1 channels, we estimated a transport rate for Fe²⁺ of ∼20 ions/s for each open channel at -60 mV and pH 7.2, with 1 μM extracellular Fe²⁺ (with 2 mM extracellular Ca²⁺). Because Ca(V)3.1 channels exhibit a significant "window current" at that voltage (open probability, ∼1%), Ca(V)3.1 channels represent a likely pathway for Fe²⁺ entry into cells with clinically relevant concentrations of extracellular Fe²⁺.

摘要

铁是一种生物必需的金属,但过量的铁会对心血管和神经系统造成损害。我们通过全细胞膜片钳记录技术,研究了细胞外 Fe²⁺对稳定转染的 HEK293 细胞中 Ca(V)3.1 通道渗透和门控的影响。我们采取了措施来维持铁的 Fe²⁺状态(例如,使用细胞外抗坏血酸)。通过使用瞬时 I-V 电流(在强去极化后测量)来分离对渗透的影响,结果发现,在 2 mM 细胞外 Ca²⁺的情况下,细胞外 Fe²⁺以电压依赖性方式快速阻断电流,这可以用 Woodhull 模型来描述,在 0 mV 时 K(D) = 2.5 mM,表观电距离 δ = 0.17。细胞外 Fe²⁺也使激活向更去极化的电压移动(在 1.8 mM 细胞外 Fe²⁺的情况下移动约 10 mV),比细胞外 Ca²⁺或 Mg²⁺更为强烈,这与表面电荷密度 σ = 1 e(-)/98 Ų和 K(Fe) = 4.5 M⁻¹的 Gouy-Chapman-Stern 模型一致。在没有细胞外 Ca²⁺的情况下(并将细胞外 Na⁺用 TEA 取代),在毫摩尔浓度下,Fe²⁺可以检测到可透过整个细胞的内向电流(在 10 mM 细胞外 Fe²⁺时,-60 mV 下为 73 ± 7 pA)。对于 Ca(V)3.1 通道的渗透,我们使用二位点/三势垒 Eyring 模型进行了计算,结果表明,在 -60 mV 和 pH 7.2 下,每个开放通道的 Fe²⁺转运速率约为 20 个离子/s,在 1 μM 细胞外 Fe²⁺(在 2 mM 细胞外 Ca²⁺存在的情况下)。由于 Ca(V)3.1 通道在该电压下表现出显著的“窗口电流”(开放概率约为 1%),因此 Ca(V)3.1 通道可能是细胞外 Fe²⁺浓度达到临床相关水平时铁进入细胞的途径。

相似文献

2
Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx.
Mol Pharmacol. 2012 Dec;82(6):1183-93. doi: 10.1124/mol.112.080176. Epub 2012 Sep 12.
7
Sodium and calcium channels in bovine chromaffin cells.
J Physiol. 1982 Oct;331:599-635. doi: 10.1113/jphysiol.1982.sp014394.
8
Ni2+ block of CaV3.1 (alpha1G) T-type calcium channels.
J Gen Physiol. 2008 Aug;132(2):239-50. doi: 10.1085/jgp.200809988.
9
Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
J Neurophysiol. 1998 Feb;79(2):622-34. doi: 10.1152/jn.1998.79.2.622.
10
Kurtoxin, a gating modifier of neuronal high- and low-threshold ca channels.
J Neurosci. 2002 Mar 15;22(6):2023-34. doi: 10.1523/JNEUROSCI.22-06-02023.2002.

引用本文的文献

1
Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions.
Int J Mol Sci. 2023 Dec 1;24(23):17034. doi: 10.3390/ijms242317034.
2
Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects.
Biomolecules. 2023 Jul 27;13(8):1172. doi: 10.3390/biom13081172.
3
Clinical and Molecular Aspects of Iron Metabolism in Failing Myocytes.
Life (Basel). 2022 Aug 8;12(8):1203. doi: 10.3390/life12081203.
5
Calcium channelopathies and intellectual disability: a systematic review.
Orphanet J Rare Dis. 2021 May 13;16(1):219. doi: 10.1186/s13023-021-01850-0.
6
9
Cellular Electrophysiology of Iron-Overloaded Cardiomyocytes.
Front Physiol. 2018 Nov 15;9:1615. doi: 10.3389/fphys.2018.01615. eCollection 2018.

本文引用的文献

1
Cd²⁺ block and permeation of CaV3.1 (α1G) T-type calcium channels: candidate mechanism for Cd²⁺ influx.
Mol Pharmacol. 2012 Dec;82(6):1183-93. doi: 10.1124/mol.112.080176. Epub 2012 Sep 12.
2
T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice.
Eur J Haematol. 2012 Jun;88(6):535-48. doi: 10.1111/j.1600-0609.2012.01779.x. Epub 2012 Apr 4.
3
4
Iron overload cardiomyopathy in clinical practice.
Circulation. 2011 Nov 15;124(20):2253-63. doi: 10.1161/CIRCULATIONAHA.111.050773.
5
Dysregulation of iron metabolism in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Adv Pharmacol Sci. 2011;2011:378278. doi: 10.1155/2011/378278. Epub 2011 Oct 12.
6
Calcium channels and iron uptake into the heart.
World J Cardiol. 2011 Jul 26;3(7):215-8. doi: 10.4330/wjc.v3.i7.215.
7
Hepcidin and iron regulation, 10 years later.
Blood. 2011 Apr 28;117(17):4425-33. doi: 10.1182/blood-2011-01-258467. Epub 2011 Feb 23.
8
Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity.
Aging Cell. 2011 Feb;10(1):172-83. doi: 10.1111/j.1474-9726.2010.00652.x.
9
T-type calcium channel as a portal of iron uptake into cardiomyocytes of beta-thalassemic mice.
Eur J Haematol. 2011 Feb;86(2):156-66. doi: 10.1111/j.1600-0609.2010.01549.x. Epub 2010 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验